
Improving Agda’s module system∗

Ivar de Bruin
Bohdan Liesnikov

Jesper Cockx
Technical University Delft

Delft, Netherlands

ABSTRACT
Agda is a dependently typed programming language and proof as-
sistant. It has a module system that provides namespacing, mod-
ule parameters and module aliases, which can be used to write
shorter and cleaner programs and proofs. However, the current im-
plementation of themodule system has several issues, including an
exponential slowdown in the desugaring of module aliases. This
paper shows how the implementation of the module system can
be changed to address these issues. Instead of desugaring modules
during type checking, we handle module parameters and aliases di-
rectly during name lookup in the scope checker, simplifying the im-
plementation and eliminating the exponential behavior. Thus we
allow users to make full use of the module system where doing so
was previously too costly. Furthermore, our changes to the module
system also pave the way to fix other issues in Agda’s implemen-
tation of pretty-printing, records and open public statements.

1 INTRODUCTION
Throughout programming history, programmers have struggled
with bugs.This is especially true in security-related programswhere
bugs can have drastic consequences. One possible solution is to ver-
ify the correctness of the program using a proof assistant such as
Coq, Lean, or Agda. This has notably seen use in, for example, the
creation of a C compiler for critical applications [31].

To create such proofs, programmers work in proof assistants [9].
Many of these proof assistants are also programming languages
with strong type systems and termination checkers that enable
writing proofs as programs through the Curry-Howard correspon-
dence. This paper focuses on Agda [4], a proof assistant that uses
a syntax similar to Haskell, allowing users to write programs in
Agda, prove them correct, then transform them to Haskell code us-
ing the Haskell back-end. This workflow produces code that is op-
timised for performance while maintaining the guarantee that the
proven properties hold. Agda is also used to prove various mathe-
matical properties or even formalize entire mathematical fields [13,
36].

To help programmers structure larger programs and proofs, Agda
provides a module system. Modules allow for easy namespacing
and grouping of definitions. In addition, there are two interesting
features that can be of great help when writing proofs: module
parameters and module aliases. Module parameters are declared
once and are then in scope for all declarations in thatmodule, while
module aliases introduce new names for a module that instantiates
these parameters with specific values. As an example, consider the

∗This is a shortened and updated version of the MSc thesis by the first author [11].
All code and results used in this paper can be found at: https://github.com/ivardb/
AgdaModuleImprovement

module CatProofs that contains a variety of proofs generalised
over a Category 𝑐 , and a module alias GroupCatProofs specializ-
ing these proofs to the category of groups groupCategory.

module CatProofs (c : Category) where
-- ...

module GroupCatProofs = CatProofs groupCategory

Structuring proofs this way increases their readability as well as
ease of writing.

Unfortunately, the current implementation of Agda (version 2.6.4)
does not perform well when many aliases are used. The problem
is caused by how Agda desugars each module alias to a set of spe-
cialized functions, which is similar to how other compilers such
as the Rust compiler deal with parametrized functions [18]. While
this technique makes sense for a compiler, it is not necessarily a
good idea for a proof assistant, as we do not care for the speed of
the type checked code, but about the speed of the type checker.
Furthermore, removing aliases makes the implementation of the
type checker more complex and error-prone due to the increase
in transformations needed. Finally, any information about module
aliases is removed by the type checker, so it is not available to the
code generation back-end, making back-end featuresmore difficult
to implement.

In this paper we analyse different possible implementations of
a simplified version of Agda’s module system. The goal is to find
an implementation strategy that removes the performance bottle-
neck while preserving the module features during type checking.
Concretely, we make the following contributions:

• We analyse the issues on the Agda GitHub issue tracker
to identify the main problems with the implementa-
tion of Agda’s module system: the lack of structure, the
performance problems with nested module aliases, and a
variety of issues related to pretty-printing (Section 3).

• We introduce the concept of term-qualified names and
demonstrate how these can be used to remove the need to
desugar modules and module aliases during type checking,
simplifying the implementation (Section 4).

• We implement three different type checkers for a mini-
mal version of Agda with parametrized modules and
module aliases and evaluate their performance on ran-
domly generatedAgda files, which shows that keeping aliases
intact has far superior performance, with barely any down-
sides. We also verify the validity of our experiments by
comparing the performance of our baseline implementa-
tion to the actual Agda implementation (Section 5).

https://github.com/ivardb/AgdaModuleImprovement
https://github.com/ivardb/AgdaModuleImprovement

Ivar de Bruin, Bohdan Liesnikov, and Jesper Cockx

• Based on our results as well as other factors such as the dif-
ficulty of refactoring Agda, we provide advice for the fu-
ture evolution of Agda’s module system, arguing that
it should preserve module aliases (Section 6).

2 AGDA’S MODULE SYSTEM
This section will cover the required background information on
Agda’s module system. We assume that readers are already famil-
iar with dependent typing [25] and its associated concepts such as
weak head normal form (WHNF) [30] and telescopes [10]. A full
description of Agda’s module system can be found in chapter 4 of
Norell’s thesis [35].

Agda’smodule system. In addition to standard namespacing,mod-
ules in Agda can be nested and have parameters:

module M (x : Bool) where
module M1 (y : Bool) where

f : Bool
f = x

module M2 (z : Bool) where
g : Bool
g = M1.f true

In the function call M1.f true, there is no need to provide a value
for the parameter x as it is still in scope. However, when a declara-
tion is used outside of its module, the module parameters have to
be supplied just like normal function parameters, so we do need to
provide an argument corresponding to the parameter y.

When using the same module with the same module arguments
in different places, it can be useful to define a module alias:

module N (X : Type) where
id : X → X
id x = x

module NBool = N Bool

A module alias creates a copy of the module that instantiates zero
or more of the parameters. Module parameters and module aliases
can be extremely useful when writing a collection of proofs that
all depend on a number, a category, or some other value.

Desugaring parametrizedmodules. Thedesugaring of parametrized
modules happens in three steps. First, Agda replaces each name
by its fully qualified version. Next, it lifts all declarations to the
top level, turning module parameters into regular function param-
eters.Third, each function call is given additional arguments corre-
sponding to the module parameters that are in scope for both the
function call and the definition. For example, the module M above
is desugared into the following:

M.M1.f : Bool -> Bool -> Bool
M.M1.f x y = x
M.M2.g : Bool -> Bool -> Bool
M.M2.g x z = M.M1.f x True

The call to M.M1.f needs to be explicitly passed the x argument as
it is no longer automatically in scope.

Desugaring module aliases. To desugar a module alias, new def-
initions are introduced: for each definition in the original module,
we need a definition in the new module that redirects to the old
definition, passing the appropriate arguments. For example, the
module N above is desugared into:

N.id : (X : Type) → X → X
N.id X x = x

NBool.id : Bool -> Bool
NBool.id = N.id Bool

This means that any arguments passed to an aliased module will
be copied once for each declaration.

There are several problems with this way of type-checking and
section 3 will explain what these problems are in more detail.

Interface files. In order to avoid having to re-check a file that
has already been checked, Agda stores information about the type-
checked code in an interface file. The information stored in these
files is then used whenever that file is imported, avoiding the need
to type-check it again.

Such an interface file consists of two parts: the sections and the
declarations. Each section corresponds to a module with its full
set of parameters, but without any declarations. This information
is needed to type-check module aliases. For example, the interface
file generated from the module M above will contain the following
sections:

section M (x : Bool)
section M1 (x : Bool) (y : Bool)
section M2 (x : Bool) (z : Bool)

After the sections come declarations of the functions and data-
types together with their given or inferred type signatures. The
declarations are all using fully qualified names and take all mod-
ule parameters as additional parameters.

3 PROBLEM DESCRIPTION
The implementation of Agda’s module system has several prob-
lems, many of which are reported as issues on GitHub1. Before
diving into these, we first describe a more general problem: the
loss of information caused by the desugaring of modules and mod-
ule aliases.

Agda allows for the implementation of custom back-ends which
can be used to compile Agda to different languages. However, by
the time the program is given to the back-end, its modules are al-
ready removed and the module parameters are moved to the dec-
laration level. This means that the back-end is not able to decide
itself how to handle these features. This rules out certain kinds of
back-ends, for example a back-end that applies a transformation
and then returns valid Agda code. As a real-world example, the
agda2hs backend has to go through great lengths to remove the
parameters that Agda adds to each function declaration in a where
block2.

Apart from this conceptual problem, there is a number of issues
related to the module system that have been reported on the Agda

1https://github.com/agda/agda/issues?q=label%3Amodules+sort%3Aupdated-desc+
2https://github.com/agda/agda2hs/blob/32cdc891d1190bb6ca86a5f16add241f1d0f58b7/
src/Agda2Hs/Compile/Function.hs#L247-L281

https://github.com/agda/agda/issues?q=label%3Amodules+sort%3Aupdated-desc+
https://github.com/agda/agda2hs/blob/32cdc891d1190bb6ca86a5f16add241f1d0f58b7/src/Agda2Hs/Compile/Function.hs#L247-L281
https://github.com/agda/agda2hs/blob/32cdc891d1190bb6ca86a5f16add241f1d0f58b7/src/Agda2Hs/Compile/Function.hs#L247-L281

Improving Agda’s module system

issue tracker on GitHub. We divide these issues into three major
groups:

(1) Lack of module structure in the typing environment:
The first class of issues is caused by the lifting of decla-
rations from (parametrized) modules to the top level. In
the past, there have been bugs in this lifting due to wrong
renaming [17] or parameters missing from function argu-
ments [22, 28, 2]. While these bugs have been fixed, oth-
ers are still open. One such issue is issue #6359, which is
caused by a declaration that should only exist locally being
added to the global scope, thereby breaking the tracking of
specific data and ultimately resulting in an illegal function
call being accepted [34].These issues show that the current
approach of Agda is both complex and restrictive.

(2) Performance problems:Thesecond class of issues is caused
by the desugaring ofmodule aliases.This desugaring causes
poor performance either by inserting large numbers ofmod-
ule parameters [27] or more often by the large numbers
of declarations that are generated by the desugaring of
module aliases [1, 12]. The current behavior of the open
public statement is also considered to be unintuitive by
many users [20, 16] due to its behavior being different de-
pending on whether module parameters are provided or
not. However, making the behavior consistent would re-
quire every open public statement to be handled as a mod-
ule alias, which is considered to be be too big of a perfor-
mance sacrifice with the current implementation [21].

(3) Pretty-Printing problems: The final class of problems
is related to the pretty-printing of calls to functions that
come from a (parametrized) module. Either Agda forgets
from which module alias a definition originated [24, 3] or
it loses track of module parameters, making infix operators
especially confusing to read [23, 14].

4 A STRUCTURED MODULE SYSTEM
Making changes to the actual Agda code base is not a quick pro-
cess. To be able to prototype a number of different approaches we
introduce a simplified version of Agda, called Simple Agda (Sec-
tion 4.1). To handle parametrized modules, Simple Agda has two
important components: it uses term-qualified names in the syntax
(Section 4.2) and a structured signature that preserves both mod-
ules and module aliases (section 4.3). Finally, we define the signa-
ture lookup operation that is required to look up term-qualified
names in the structured signature (section 4.4).

4.1 Simple Agda
Simple Agda supports dependent function types, a single universe
Type with Type : Type, and primitive types Unit and Bool. The
full syntax of Simple Agda can be found in Grammar 1. It does not
have support for implicit arguments, universe levels, or inductive
data types, as these do not impact the module system, only the
complexity of the implementation.

As Simple Agda is dependently typed, we need to be able to eval-
uate terms to WHNF during type checking. The evaluation rules
can be found in figure 1. The typing rules of Simple Agda are stan-
dard and can be found in figure 2.

𝐴, 𝐵,𝑢, 𝑣 F 𝑥 Variable
| Type Universe
| Unit | Bool Built-in types
| 1 | true | false Basic values
| if 𝑢 then 𝑣 else𝑤 if expressions
| (𝑥 : 𝐴) → 𝐵 Dependent function types
| 𝜆𝑥 . 𝑢 Lambda
| 𝑢 𝑣 Application

Δ, Γ F 𝜖 | (𝑥 : 𝐴)Δ Contexts

Grammar 1: Simple Agda grammar, without modules

Σ ⊢ (𝜆𝑥 . 𝑢) 𝑣 −→ 𝑢 [𝑥 := 𝑣]
Σ ⊢ 𝑢 −→ 𝑢′

Σ ⊢ 𝑢 𝑣 −→ 𝑢′ 𝑣

Σ ⊢ if true then 𝑣 else𝑤 −→ 𝑣

Σ ⊢ if false then 𝑣 else𝑤 −→ 𝑤

Σ ⊢ 𝑢 −→ 𝑢′

Σ ⊢ if 𝑢 then 𝑣 else𝑤 −→ if 𝑢′ then 𝑣 else𝑤

Figure 1: Small-step evaluation of Simple Agda terms

So far Simple Agda has no way to introduce new functions or
modules. This is our focus for the rest of this section.

𝑥 : 𝐴 ∈ Γ

Σ; Γ ⊢ 𝑥 : 𝐴 Σ; Γ ⊢ Type : Type

Σ; Γ ⊢ Bool : Type Σ; Γ ⊢ Unit : Type

Σ; Γ ⊢ true : Bool Σ; Γ ⊢ false : Bool Σ; Γ ⊢ 1 : Unit

Σ; Γ ⊢ 𝑢 : Bool Σ; Γ ⊢ 𝑣 : 𝐴 Σ; Γ ⊢ 𝑤 : 𝐴

Σ; Γ ⊢ if 𝑢 then 𝑣 else𝑤 : 𝐴

Σ; Γ ⊢ 𝐴 : Type Σ; Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type
Σ; Γ ⊢ (𝑥 : 𝐴) → 𝐵 : Type

Σ; Γ, 𝑥 : 𝐴 ⊢ 𝑢 : 𝐵

Σ; Γ ⊢ 𝜆𝑥. 𝑢 : 𝐴 → 𝐵

Σ; Γ ⊢ 𝑢 : 𝐴 Σ ⊢ 𝐴 −→∗ (𝑏 : 𝐵) → 𝐶 Σ; Γ ⊢ 𝑣 : 𝐵

Σ; Γ ⊢ 𝑢 𝑣 : 𝐶 [𝑏 := 𝑣]

Σ; Γ ⊢ 𝑢 : 𝐴 Σ ⊢ 𝐴 −→∗ 𝐶 Σ ⊢ 𝐵 −→∗ 𝐶

Σ; Γ ⊢ 𝑢 : 𝐵

Figure 2: Typing rules for Simple Agda terms

https://github.com/agda/agda/issues/6359

Ivar de Bruin, Bohdan Liesnikov, and Jesper Cockx

Σ; Γ ⊢ 𝐴 : Type
Σ; Γ ⊢ 𝑓 : 𝐴

Σ; Γ ⊢ 𝑢 : 𝐴

Σ; Γ ⊢ 𝑓 = 𝑢

Σ; Γ ⊢ Δ Σ; ΓΔ ⊢ Σ′

Σ; Γ ⊢ module𝑀 Δ where Σ′
Σ; Γ ⊢ Δ Σ; ΓΔ ⊢ Σ?𝛼

Σ; Γ ⊢ module𝑀 Δ = 𝛼

Figure 3: Typing rules for declarations in Simple Agda

4.2 Term-qualified names
Looking back at the desugaring of the module M in section 2, the
inserted parameters are always exactly those belonging to themod-
ules whose names are added to create fully qualified names. So in-
stead of transforming module parameters into function arguments,
we introduce term-qualified names to the syntax in grammar 2.

𝐴, 𝐵,𝑢, 𝑣 F · · ·
| 𝛼.𝑓 Term-qualified name

𝛼, 𝛽 F 𝜄 No qualifier
| (𝑀 𝑢).𝛼 Module qualifier

Grammar 2: Term-qualified names

Term-qualified names extend the syntax of qualified names to
allow passing arguments directly to the module. For example, this
allows us to write (M x) .M1.f true instead of M.M1.f x true, keep-
ing module arguments next to the module they belong to.

Since the scope checker already replaces each name with its
fully qualified version, it is easy to add the appropriate module ar-
guments at the same time. The type checker now no longer needs
to deal with the moving around and insertion of module parame-
ters.

4.3 A structured signature
To facilitate working with term-qualified names, we switch to a
structured signature that preserves modules and their parameters.
The syntax for structured signatures is given in grammar 3.

𝑑𝑒𝑐𝑙 F 𝑓 : 𝐴 Type declaration
| 𝑓 = 𝑢 Function definition
| module𝑀 Δ where Σ Module definition
| module𝑀 Δ = 𝛼 Module alias

Σ F 𝜖 | 𝑑𝑒𝑐𝑙, Σ Declaration signature

Grammar 3: Structured signature

Wedefine the typing rules for declarations in Simple Agda in fig-
ure 3. Checking a type declaration or a function definition amounts
to checking that respectively the type or the body is well-typed.
There is no check that each symbol is only declared and defined
once or that its declaration and definition are consistent, but such
a check can easily be added. For typing a module, we check that
the telescope is well-formed and that the declarations in it are valid.
For module aliases, we also first check the telescope and then use
the typing rules for qualifier from figure 7 to check that the alias
is well-formed (see section 4.4).

(module𝑀 Δ = Σ′) ∈ Σ (Δ1,Δ2) = split(Δ, 𝑎)
Σ0 ⊢ Σ′ [Δ1 := 𝑎]!𝛼 ⇝ (Δ′, Σ′′)
Σ0 ⊢ Σ!(𝑀 𝑎).𝛼 ⇝ (Δ2Δ′, Σ′′)

(module𝑀 Δ = 𝛽) ∈ Σ (Δ1,Δ2) = split(Δ, 𝑎)
Σ0 ⊢ Σ0!𝛽 ⇝ (Δ′, Σ′)

Σ0 ⊢ Σ′ [Δ1 := 𝑎]!𝛼 ⇝ (Δ′′, Σ′′)
Σ0 ⊢ Σ!(𝑀 𝑎) .𝛼 ⇝ (Δ2Δ′Δ′′, Σ′′)

Σ0 ⊢ Σ!𝜄 ⇝ (𝜖, Σ)

Figure 4: Signature lookup

Σ ⊢ Σ!𝛼 ⇝ (Δ, Σ′) 𝑓 = 𝑢 ∈ Σ′

Σ ⊢ 𝛼.𝑓 −→ 𝜆Δ. 𝑢

Figure 5: Evaluation of term-qualified names

In contrast to the current specification of Agda’s module sys-
tem [35], these typing rules do not need to insert any parameters,
nor do we need to create or modify any declarations for dealing
with module aliases.

4.4 Signature lookup
Term-qualified names need to be handled properly during evalua-
tion of expressions. For example, the term (M false).(M2 false).g
evaluates in one step to (M false) .(M1 true).f, which evaluates
further to false.

Signature lookup is the process of finding the declaration cor-
responding to a given (term-qualified) name. To formally define
signature lookup, we use the syntax Σ0 ⊢ Σ!𝛼 ⇝ (Δ, Σ′) to say
that we are looking for the signature belonging to the module 𝛼
relative to Σ and that this results in the signature Σ′. Here the tele-
scope Δ represents the remaining module parameters in case any
module in 𝛼 is underapplied, and the signature Σ0 represents the
root signature that is used for looking up module aliases.

The definition of signature lookup can be found in figure 4. In
the case where we encounter a module application, we split the
module telescope into two (potentially empty) parts: the part of
the parameter telescope for which arguments are provided, and
the remaining part. Next, we substitute the arguments into the
module’s signature and look up the remaining qualifier in it. In an
actual implementation the substitution on the signature would be
implemented lazily as there is no need to perform it on the whole
signature. When we encounter a module alias during lookup, we
need to find the signature belonging to the aliased module. As we
use fully qualified names, this lookup is relative to the root signa-
ture instead of relative to the current signature. We also split the
telescope of the module being aliased, as it is not required to pro-
vide an argument for each of the parameters in an alias. The final
remaining telescope consists of the unused parameters of the mod-
ule alias (Δ2), the unused parameters of the aliased qualifier (Δ′),
and the unused parameters of the remaining qualifier (Δ′′).

Improving Agda’s module system

(module𝑀 Δ = Σ′) ∈ Σ (Δ1,Δ2) = split(Δ, 𝑎)
Σ0; Γ ⊢ 𝑎 : Δ1 Δ2 = 𝜖 OR noArgs(𝛼)

Σ0; Γ ⊢ Σ′ [Δ1 := 𝑎]?𝛼
Σ0; Γ ⊢ Σ?(𝑀 𝑎) .𝛼

(module𝑀 Δ = 𝛽) ∈ Σ (Δ1,Δ2) = split(Δ, 𝑎)
Σ0; Γ ⊢ 𝑎 : Δ1 Δ2 = 𝜖 OR noArgs(𝛼)

Σ0 ⊢ Σ0!𝛽 ⇝ (Δ′, Σ′) Σ0 ⊢ Σ′ [Δ := 𝑎]?𝛼
Σ0; Γ ⊢ Σ?(𝑀 𝑎) .𝛼

Σ0; Γ ⊢ Σ?𝜄

Figure 6: Typing rules for qualifiers

Σ; Γ ⊢ Σ?𝛼 Σ!𝛼 ⇝ (Δ, Σ′) 𝑓 : 𝐴 ∈ Σ′

Σ; Γ ⊢ 𝛼.𝑓 : Δ → 𝐴

Figure 7: Typing of term-qualified names

Signature lookup is used for evaluation of term-qualified names,
as shown in figure 5. The unused parameters Δ become additional
arguments to the function by introducing an iterated lambda 𝜆Δ.

When evaluating a term we can typically assume that the term
is well-typed. However, when type checking a qualified name 𝛼.𝑓 ,
we should also check that all the terms embedded in the qualifier
𝛼 are well-typed as arguments to their respective modules. This is
done through the auxiliary judgement Σ0; Γ ⊢ Σ?𝛼 as defined in
figure 6. If we encounter an underapplied module (i.e. Δ2 is not
empty), we forbid any further module parameters from appearing
in the rest of the qualifierwith the side condition noArgs(𝛼).This is
because the types of these parameters could depend on themissing
parameters, which would be problematic. Since the current imple-
mentation of Agda requires parameters to be given sequentially,
this is not removing any expressivity from the language.

Finally, the typing rule for term-qualified names is given in fig-
ure 7. The unused parameters Δ here become an iterated function
type Δ →.

5 EXPERIMENTAL EVALUATION
This section will cover the experiments used to measure the per-
formance improvement of our proposed changes to the implemen-
tation of Agda’s module system. The experiments were executed
for our implementations of Simple Agda as well as on the current
implementation of Agda itself to verify the accuracy of our base-
line. We will only cover four of our experiments in this paper, the
remaining experiments can be found in chapter 7 of the full the-
sis [11].

5.1 The implemented type checkers
For the experimental evaluation, we implement three versions of
a type checker for Simple Agda, differing only in their handling of
modules:

• Version 0 uses the approach Agda currently takes and lifts
all declarations to the top level, removing all module fea-
tures. This version will serve as the baseline of our experi-
ments.

• Version 1 makes use of term-qualified names and uses a
structured signature, preserving modules and module pa-
rameters. Module aliases will create new declarations, sim-
ilar to version 0, except these declarations will now be a
part of modules with module parameters.

• Version 2 makes use of term-qualified names and a struc-
tured signature supportingmodule aliases.This version there-
fore no longer has tomake any changes during type-checking,
completely preserving the original source syntax.

In addition to the three versions, we implemented a version 3
that also exposes term-qualified syntax to the programmer. This
does not change the performance, but does increase expressivity
and allows us to fix the pretty-printing issues with infix and mix-
fix operators [23]. An analysis of how other pretty-printing issues
related to the module system could be addressed in future work is
discussed in section 5.3 of the full thesis [11].

5.2 Experiment setup
For our evaluation, we need to be able to to isolate the impact of
specific aspects of the module system on the performance, and we
need to make sure that our test files do not use Agda features that
are not supported in Simple Agda. Hence we create a generator
that can generate files according to some parameters, such as the
size of the arguments provided to amodule alias. Using this genera-
tor, we generate 15 files for each of our experiment configurations.
These files are then converted from Simple Agda to Agda to allow
them to be checked by Agda as well.

The Simple Agda experiments were timed using the timestats li-
brary for Haskell [19], while the Agda experiments made use of the
Agda-2.6.2.2 executable and its built-in benchmarking features [4].

The experiments were all executed on a 6-core Intel i7-8750H
running at 2.20 GHz with 16 GB of RAM and each experiment was
repeated 50 times, after which all times were averaged. The run-
times for the different files were also averaged to create a single
set of timing data per experiment configuration.

5.3 Performance comparison
Thefirst experiment uses only declarations with no module param-
eters or aliases. This experiment, found in figure 8, shows that the
later type checkers perform slightly better, but that all implemen-
tations have roughly the same asymptotic behaviour. This makes
sense as there are no large differences between the implementa-
tions in this case. However, it is useful to observe that the simpli-
cation of the code in the later versions has performance benefits,
even in cases where the complexity is not necessary. This also ex-
plains why Agda needs multiple seconds to type-check the files: it
is a much more complex language with many checks not included
in Simple Agda (e.g. universe levels and termination checking) and
thus the type checker will always be slower.

The second experiment, shown in figure 9, shows the first clear
difference between the implementations. In this experiment, we
have created a module with 40 declarations and aliased it. We then

Ivar de Bruin, Bohdan Liesnikov, and Jesper Cockx

Figure 8: Experiment 1: Only declarations

Figure 9: Experiment 2: Module argument size

Figure 10: Experiment 3: Nested module aliases

Improving Agda’s module system

Figure 11: Experiment 4: Increased usage of module aliases

increase the size of the argument provided to the module. Both
versions 0 and 1, as well as Agda itself, see a significant increase
in serialization time. This makes sense as they are all copying the
module argument once for each declaration in the module. Version
2 is barely affected by the increasing size as it does not create these
copies. Furthermore, we can see that both Agda and version 0 are
also affected in their type-checking performance. The reasons for
this are not as obvious, but this is likely related to the increased
amount of parameter manipulations.

The third experiment, shown in figure 10, shows the clearest
difference between the approaches. For this experiment, we have a
base module M0with 5 declarations and a single module parameter.
We then add an increasing number of modules that look like this:

module M0 (x : Bool) where -- ...

module M1 (x : Bool) where
module P = M0
module Q = P (f1 x)
module R = P (f2 x)

module M2 (x : Bool) where
module P = M1
module Q = P (f1 x)
module R = P (f2 x)

-- ...

This creates a number of nested aliases which produces an expo-
nential number of declarations when aliases are expanded. This is
the case for all implementations except for version 2: as we can
see from the graph (note the exponential scale!), this is the only
version that does not show an exponential increase in both serial-
ization and type-checking time.

Not generating the new declarations does have some disadvan-
tages.When a declaration is usedmultiple times, the typewill have
to be generatedmultiple times as well, while if you generate all dec-
larations immediately, they will only be generated once. To mea-
sure the impact of this, the fourth experiment, shown in figure 11,

uses an increasing number of aliased declarations, in the most ex-
treme case generating expressions such as:

M'.d70 (M'.d59 (M'.d87 (M'.d91 (M'.d75 ((\x258.
M'.d29 (M'.d40 (M'.d51 (M'.d60 (M'.d45 (M'.d85
(M'.d5 (M'.d68 (M'.d85 (M'.d55 (M'.d98 (M'.d75
(M.d5 (if d191 then x258 else True)
(if True then d146 else False))))))))))))))
(if False then d120 else d212))))))

From the results, we can see that this scenario is indeed less favor-
able to version 2, but even in this worst-case scenario it is still the
fastest.

6 DISCUSSION
From the results in the previous section, it is clear that version
2 shows a significant improvement in performance compared to
version 0. It has no exponential growth in code size and even in
its worst case it is still faster than the other versions. Furthermore,
the comparison to Agda shows that version 0 behaves the same or
better as Agda in the experiments.Thismeans that if we implement
the module system of version 2 for Agda, it is reasonable to expect
that this will also lead to significant improvements.

The performance argument is not the only reason to switch to
the new implementation. The system is simpler to implement and
preserves more information that can be used by different back-
ends. This preserved information allows us to improve the pretty-
printing of names frommodule aliases [11], and it also allows us to
resolve an interesting problem with pretty-printing of mixfix oper-
ators. To understand the latter, let us take a look at the following
Agda file:

module If (A : Type) where
if_then_else_ : Bool → A → A → A
if true then x else y = x
if false then x else y = y

if-lemma : (b : Bool) →
If.if_then_else_ Bool b true false ≡ b

Ivar de Bruin, Bohdan Liesnikov, and Jesper Cockx

if-lemma b = {! !}
-- Goal : (If.if Bool then b else false) true ≡ b

At the moment, Agda can not distinguish parameters that belong
to the module and those belonging to the function, leading it to
pretty-print the type of the goal as:

(If.if Bool then b else false) true ≡ b

This shows that Agda confuses the module parameter for the first
argument to the if statement.With the additional knowledge about
which arguments aremodule parameters, this bug can be prevented,
pretty-printing the goal instead as:

If.if_then_else_ Bool b false true

By exposing term-qualified names to the user, as implemented in
version 3, we can do even better by printing the goal as:

(If Bool).if b then false else true

The main argument against changing the current implementa-
tion of Agda’s module system to the one we propose is the time
and effort it will take. Since Agda is a much larger language than
Simple Agda and the module system intersects with many other of
its features, the implementation will certainly be time-consuming.
In particular, qualified names were always considered to be a sim-
ple value, while now they will have to contain terms. This will re-
quire refactoring the representation of names used internally, but
it should have no performance effects as those parameters are al-
ready present as function arguments in the current implementa-
tion. Similar sorts of refactors are required for many other parts of
the Agda type checker that assume that all declarations are global,
while now there is a local state as well.

Ultimately, we expect the final result of such an effort will re-
duce the complexity rather than adding to it. In particular, the
clearer separation between module parameters and regular func-
tion arguments will greatly reduce the risk of bugs related to mod-
ule parameters in the future. Given the performance benefits and
the greater clarity of the implementation, we believe switching the
module system of Agda to the implementation proposed by version
2 is a worthwhile endeavour.

7 RELATEDWORK
In this section, we discuss a number of other module systems and
their implementations, and explain how their problems and solu-
tions differ from the ones in Agda.

ML modules. While modules in Agda are parametrized over
values, functors in ML and ML-like languages are modules that
are parametrized over other modules [32, 33]. There have been at-
tempts to unify the module and term-level languages [37], which
would also allow modules parametrized by terms as in Agda. Com-
pared to ML, Agda modules themselves are not first-class, but ML-
style functors can be simulated by using records [5]. When there
have been problemswith exponential growth in code size inML [39,
38], this has been caused by the compiler actually duplicating full
definitions. Agda does not have this problem, as it only ever gener-
ates aliases to existing definitions, which can be quickly generated
on-the-fly when needed, as demonstrated by our implementation.

Rust generics. Generic functions in Rust [29, 6] and other lan-
guages are also specialized to concrete types during compilation.

This specialization requires some extra work and produces larger
code, but this is an acceptable trade-off as long as it has benefits
during the execution of the compiled code. In contrast, in a type
checker like Agda we are more concerned with the speed of the
type checking itself, and we can leave optimization of the code to
the back-end compiler.

Lean namespaces and sections. The Lean proof assistant has
support for nested, hierarchical namespaces as well as sections
parametrized over variables [41]. Together these can simulate Agda
modules, but not module instantiations or module aliases. Since
there is no way to specialize a section to specific values, there is
also no risk of code size explosion.

Coq modules. The Coq proof assistant has an extensive mod-
ule system including module types, nested modules, higher-order
functors and module subtyping [40, 15]. The module structure is
preserved in the kernel of Coq so there is no code generation and
hence no risk of exponential code explosion. There is no way to di-
rectly parametrize a module by a term-level variable, so arguments
to functors are typically smaller than module arguments in Agda.

Isabelle locales. Locales are Isabelle’s approach for dealingwith
parametric theories [8, 7]. They provide a way to define a shared
set of parameters and assumptions about those parameters. Each
locale can then be extended with definitions and theorems. This
can happen at any point in the program, making locales more flex-
ible than Agda modules at the cost of making name lookup more
complicated. A locale can also extend another locale by importing
it, which corresponds to a nested module in Agda. Finally, a lo-
cale can be interpreted by instantiating its parameters, which cre-
ates qualified copies of each definition of the locale. Ballarin de-
scribes how locales are implemented by means of a development
graph [26], which serve a similar role to the structured signature
we introduced in our implementation. Since Isabelle uses classical
logic and does not by default produce proof terms, there are no
issues with exponential growth.

8 CONCLUSION AND FUTUREWORK
The main goal of this paper was to demonstrate a clear path to-
wards improving the performance of Agda’s module system. We
have created a simpler language called Simple Agda to evaluate
the performance of three different approaches: Agda’s current ap-
proach (version 0), keeping modules and module parameters in-
tact (version 1) and keeping modules and module aliases both in-
tact (version 2). We have introduced the concept of term-qualified
names, easing the implementation of these later versions by resolv-
ing much of the difficulty of Agda’s module system already during
scope checking.

We have evaluated these approaches in a variety of scenarios, us-
ing randomly generated files. These experiments showed that the
best approach is to keep modules and module aliases intact dur-
ing type-checking. This has the best performance in all evaluated
scenarios and completely eliminates the exponential complexity of
Agda’s current system when aliases are nested.

Furthermore, this change allows for several other problems to
be addressed aswell.The improvedmodule systemuses term-qualified
names internally: (M true).f. Allowing this syntax to be usedwhen

Improving Agda’s module system

programming in Agda will remove a significant number of pretty-
printing problems. The improved performance of module aliases
also means that open public statements can be changed to a more
intuitive implementation. This was not yet possible due to the per-
formance bottleneck.

The performance benefits combinedwith the other benefitsmean
that making the proposed changes to Agda will significantly im-
prove the user experience and eliminate some long-standing open
issues. The performance problems especially have hampered the
development of, for example, category theory proofs, as these ben-
efit greatly from module aliases, which so far could not be used
extensively.

There are two major areas related to Agda’s module system that
should be looked at in future work: evaluation and record types.
For evaluation, it will need to be decided how this should han-
dle qualified names. Do we keep the alias qualifier when reducing
terms, akin to a sort of dynamic dispatch, or do we reduce it to the
aliased term and start fully reducing terms? Now that we maintain
aliases after type-checking, such questions and many others can
start to be analyzed in much more detail.

The second major area for future work are Agda’s record types.
Currently, each declaration of a record type in Agda generates
a new module. Apart from the fields, this module can also con-
tain some other declarations (such as simple function definitions)
but not others (such as datatypes). At the moment, when creating
an alias to an application of a record module, these declarations
are not printed correctly. More generally, it is unclear how record
types should interact with the module system. Once the module
system has been cleaned up, the next step is to do the same for the
record system too.

REFERENCES
[1] Andreas Abel. Exponential module chain leads to infeasible

scope checking. 2022. uRl: https://github.com/agda/agda/
issues/1646 (visited on 03/31/2023).

[2] Andreas Abel. Not a splittable variable. 2016. uRl: https://
github.com/agda/agda/issues/2181 (visited on 03/31/2023).

[3] Andreas Abel. Printer prefers (longer) qualified over (shorter)
unqualified name. 2019. uRl: https://github.com/agda/agda/
issues/3240 (visited on 03/31/2023).

[4] Agda Community. Agda. Version 2.6.2.2. Mar. 27, 2022. uRl:
https://github.com/agda/agda/tree/v2.6.2.2.

[5] Agda Language Reference. Record types. 2023. uRl: https://
agda.readthedocs.io/en/latest/language/record-types.html
(visited on 05/04/2023).

[6] Brian Anderson. Generics and Compile-Time in Rust. Ping-
CAP. June 15, 2020. uRl: https://www.pingcap.com/blog/
generics-and-compile-time-in-rust/ (visited on 02/09/2023).

[7] Clemens Ballarin. “Interpretation of Locales in Isabelle:The-
ories and Proof Contexts”. In:Mathematical KnowledgeMan-
agement, 5th International Conference, MKM 2006, Woking-
ham, UK, August 11-12, 2006, Proceedings. Ed. by JonathanM.
Borwein and William M. Farmer. Vol. 4108. Lecture Notes
in Computer Science. Springer, 2006, pp. 31–43. isbn: 3-540-
37104-4. doi: 10.1007/11812289_4. uRl: http://dx.doi.org/10.
1007/11812289_4.

[8] Clemens Ballarin. “Tutorial to locales and locale interpreta-
tion”. In:Contribuciones científicas en honor deMirian Andrés
Gómez. Universidad de La Rioja. 2010, pp. 123–140.

[9] Henk Barendregt and Herman Geuvers. “Proof-assistants
using dependent type systems”. In: Handbook of automated
reasoning. NLD: Elsevier Science Publishers B. V., Jan. 1, 2001,
pp. 1149–1238. isbn: 978-0-444-50812-6. (Visited on 02/03/2023).

[10] N. G. de Bruijn. “Telescopic mappings in typed lambda cal-
culus”. In: Information and Computation 91.2 (Apr. 1, 1991),
pp. 189–204. issn: 0890-5401. doi: 10 .1016/0890- 5401(91)
90066 - B. uRl: https : / /www . sciencedirect . com / science /
article/pii/089054019190066B (visited on 02/03/2023).

[11] Ivar de Bruin. “Improving Agda’s module system”. Msc the-
sis. Delft,TheNetherlands: TUDelft, 2023. uRl: http://resolver.
tudelft.nl/uuid:98b8fbf5-33f0-4470-88b0-39a9d526b115.

[12] Jacques Carette. Switch to a structured signature? 2022. uRl:
https : / / github . com / agda / agda / issues / 4331 (visited on
03/31/2023).

[13] Jacques Carette and Jason Hu. “Formalizing Category The-
ory in Agda”. In: (2021). doi: 10.1145/3437992.3439922.

[14] Liang-Ting Chen. Qualified names are printed if introduced
by ‘open M …‘ 2022. uRl: https : / /github.com/agda/agda/
issues/5632 (visited on 03/31/2023).

[15] Jacek Chrzaszcz. “Implementing Modules in the Coq Sys-
tem”. In: Theorem Proving in Higher Order Logics, 16th In-
ternational Conference, TPHOLs 2003, Rom, Italy, September
8-12, 2003, Proceedings. Ed. by David A. Basin and Burkhart
Wolff. Vol. 2758. LectureNotes in Computer Science. Springer,
2003, pp. 270–286. isbn: 3-540-40664-6. uRl: http://springerlink.
metapress.com/openurl.asp?genre=article&issn=0302-
9743&volume=2758&spage=270.

[16] Nils Anders Danielsson. Record constructors sometimes in record
modules, sometimes not. 2019. uRl: https://github.com/agda/
agda/issues/4189 (visited on 03/31/2023).

[17] Nils Anders Danielsson. Shadowing parameters are sometimes
renamed. 2020. uRl: https://github.com/agda/agda/issues/
2018 (visited on 03/31/2023).

[18] Rust developers. Monomorphization. Rust Compiler Devel-
opment Guide. Nov. 30, 2023. uRl: https://rustc-dev-guide.
rust-lang.org/backend/monomorph.html (visited on 11/30/2023).

[19] Facundo Domínguez. timestats. Version 0.1.0. July 13, 2022.
uRl: https://hackage.haskell.org/package/timestats-0.1.0.

[20] Paolo G. Giarrusso. Regression with open public. 2018. uRl:
https : / / github . com / agda / agda / issues / 1985 (visited on
03/31/2023).

[21] Google Code Exporter. Change the semantics of open public
in parameterised module. 2018. uRl: https : / / github . com /
agda/agda/issues/892 (visited on 03/31/2023).

[22] Google Code Exporter.Copatterns do not work in parametrized
modules. 2015. uRl: https://github.com/agda/agda/issues/
940 (visited on 03/31/2023).

[23] Google Code Exporter. Printing of infix/mixfix operators de-
fined in parametrized modules. 2022. uRl: https : / / github .
com/agda/agda/issues/632 (visited on 03/31/2023).

[24] Google Code Exporter. Undeclared name accepted in fixity
declaration. 2015. uRl: https://github.com/agda/agda/issues/
329 (visited on 03/31/2023).

https://github.com/agda/agda/issues/1646
https://github.com/agda/agda/issues/1646
https://github.com/agda/agda/issues/2181
https://github.com/agda/agda/issues/2181
https://github.com/agda/agda/issues/3240
https://github.com/agda/agda/issues/3240
https://github.com/agda/agda/tree/v2.6.2.2
https://agda.readthedocs.io/en/latest/language/record-types.html
https://agda.readthedocs.io/en/latest/language/record-types.html
https://www.pingcap.com/blog/generics-and-compile-time-in-rust/
https://www.pingcap.com/blog/generics-and-compile-time-in-rust/
https://doi.org/10.1007/11812289_4
http://dx.doi.org/10.1007/11812289_4
http://dx.doi.org/10.1007/11812289_4
https://doi.org/10.1016/0890-5401(91)90066-B
https://doi.org/10.1016/0890-5401(91)90066-B
https://www.sciencedirect.com/science/article/pii/089054019190066B
https://www.sciencedirect.com/science/article/pii/089054019190066B
http://resolver.tudelft.nl/uuid:98b8fbf5-33f0-4470-88b0-39a9d526b115
http://resolver.tudelft.nl/uuid:98b8fbf5-33f0-4470-88b0-39a9d526b115
https://github.com/agda/agda/issues/4331
https://doi.org/10.1145/3437992.3439922
https://github.com/agda/agda/issues/5632
https://github.com/agda/agda/issues/5632
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=270
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=270
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=270
https://github.com/agda/agda/issues/4189
https://github.com/agda/agda/issues/4189
https://github.com/agda/agda/issues/2018
https://github.com/agda/agda/issues/2018
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://hackage.haskell.org/package/timestats-0.1.0
https://github.com/agda/agda/issues/1985
https://github.com/agda/agda/issues/892
https://github.com/agda/agda/issues/892
https://github.com/agda/agda/issues/940
https://github.com/agda/agda/issues/940
https://github.com/agda/agda/issues/632
https://github.com/agda/agda/issues/632
https://github.com/agda/agda/issues/329
https://github.com/agda/agda/issues/329

Ivar de Bruin, Bohdan Liesnikov, and Jesper Cockx

[25] MartinHofmann. “Syntax and Semantics of Dependent Types”.
In: Semantics and Logics of Computation. Ed. by Andrew M.
Pitts and P. Dybjer. CambridgeUniversity Press, 1997, pp. 79–
130. doi: 10 . 1017 / CBO9780511526619 . 004. uRl: https : / /
www. tcs . ifi . lmu .de /mitarbeiter /martin - hofmann/pdfs /
syntaxandsemanticsof-dependenttypes.pdf.

[26] Dieter Hutter. “Management of Change in Structured Veri-
fication”. In: Fifteenth IEEE International Conference on Au-
tomated Software Engineering. ASE. IEEE, 2000, p. 23. doi:
10.1109/ASE.2000.873647.

[27] Arjen Jonathan. Unnecessary conversion checking due to pa-
rameterized module slows type-checking (a lot). 2022. uRl:
https : / / github . com / agda / agda / issues / 4517 (visited on
03/31/2023).

[28] Wolfram Kahl. Regression: Module parameters lost. 2015. uRl:
https : / / github . com / agda / agda / issues / 1701 (visited on
03/31/2023).

[29] Steve Klabnik and Carol Nichols.TheRust Programming Lan-
guage. 1st Edition. San Francisco: No Starch Press, June 26,
2018. 552 pp. isbn: 978-1-59327-828-1.

[30] “Theλ-Calculus”. In:Abstract ComputingMachines: A Lambda
Calculus Perspective. Ed. by W. Kluge et al. Texts in Theoret-
ical Computer Science. Berlin, Heidelberg: Springer, 2005,
pp. 51–88. isbn: 978-3-540-27359-2. doi: 10 . 1007 / 3 - 540 -
27359-X_4. uRl: https://doi.org/10.1007/3-540-27359-X_4
(visited on 02/03/2023).

[31] Xavier Leroy et al. CompCert C verified compiler. 2022. uRl:
https://compcert.org/compcert-C.html (visited on 04/10/2023).

[32] David MacQueen. “Modules for Standard ML”. In: Proceed-
ings of the 1984 ACM Symposium on LISP and Functional
Programming. LFP ’84. Austin, Texas, USA: Association for
ComputingMachinery, 1984, pp. 198–207. isbn: 0897911423.
doi: 10.1145/800055.802036. uRl: https://doi.org/10.1145/
800055.802036.

[33] David MacQueen, Robert Harper, and John Reppy. “The His-
tory of Standard ML”. In: Proc. ACM Program. Lang. 4.HOPL
(June 2020). doi: 10 . 1145 / 3386336. uRl: https : / / doi - org .
tudelft.idm.oclc.org/10.1145/3386336.

[34] OrestisMelkonian.Unsafe(?) irrelevant projections by ‘open‘ing.
2023. uRl: https://github.com/agda/agda/issues/6359 (vis-
ited on 03/31/2023).

[35] Ulf Norell. “Towards a practical programming language based
on dependent type theory”. PhD thesis. Göteborg, Sweden:
Chalmers University of Technology and Göteborg Univer-
sity, 2007. 166 pp. uRl: https://www.cse.chalmers.se/~ulfn/
papers/thesis.pdf.

[36] Egbert Rijke et al.Univalentmathematics in Agda. uRl: https:
//github.com/UniMath/agda-unimath/.

[37] ANDREAS ROSSBERG. “1ML – Core and modules united”.
In: Journal of Functional Programming 28 (2018), e22. doi:
10.1017/S0956796818000205.

[38] Yuhi Sato and Yukiyoshi Kameyama. “Type-safe generation
of modules in applicative and generative styles”. In: Proceed-
ings of the 20th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences. GPCE
’21: Concepts and Experiences. Chicago ILUSA: ACM,Oct. 17,
2021, pp. 184–196. isbn: 978-1-4503-9112-2. doi: 10 . 1145 /

3486609 . 3487209. uRl: https : / / dl . acm .org /doi / 10 . 1145 /
3486609.3487209 (visited on 02/07/2023).

[39] Yuhi Sato, Yukiyoshi Kameyama, and Takahisa Watanabe.
“Module generation without regret”. In: Proceedings of the
2020 ACM SIGPLAN Workshop on Partial Evaluation and Pro-
gram Manipulation. PEPM 2020. New York, NY, USA: As-
sociation for Computing Machinery, Jan. 20, 2020, pp. 1–
13. isbn: 978-1-4503-7096-7. doi: 10.1145/3372884.3373160.
uRl: https://doi.org/10.1145/3372884.3373160 (visited on
02/07/2023).

[40] TheCoqDevelopment Team.TheCoq Proof Assistant, version
8.17.1. 2023.

[41] The Lean Development Team. The Lean 4 Proof Assistant.
2023.

https://doi.org/10.1017/CBO9780511526619.004
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/pdfs/syntaxandsemanticsof-dependenttypes.pdf
https://doi.org/10.1109/ASE.2000.873647
https://github.com/agda/agda/issues/4517
https://github.com/agda/agda/issues/1701
https://doi.org/10.1007/3-540-27359-X_4
https://doi.org/10.1007/3-540-27359-X_4
https://doi.org/10.1007/3-540-27359-X_4
https://compcert.org/compcert-C.html
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/3386336
https://doi-org.tudelft.idm.oclc.org/10.1145/3386336
https://doi-org.tudelft.idm.oclc.org/10.1145/3386336
https://github.com/agda/agda/issues/6359
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://github.com/UniMath/agda-unimath/
https://github.com/UniMath/agda-unimath/
https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1145/3486609.3487209
https://doi.org/10.1145/3486609.3487209
https://dl.acm.org/doi/10.1145/3486609.3487209
https://dl.acm.org/doi/10.1145/3486609.3487209
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/3372884.3373160

	Abstract
	1 Introduction
	2 Agda's module system
	3 Problem Description
	4 A Structured Module System
	4.1 Simple Agda
	4.2 Term-qualified names
	4.3 A structured signature
	4.4 Signature lookup

	5 Experimental evaluation
	5.1 The implemented type checkers
	5.2 Experiment setup
	5.3 Performance comparison

	6 Discussion
	7 Related work
	8 Conclusion and Future Work

