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Abstract. Dependently typed languages allow us to state a program’s
expected properties and automatically check that they are satisfied at
compile time. Yet the implementations of these languages are themselves
just software, so can we really trust them? The goal of this paper is to
develop a lightweight technique to improve their trustworthiness by giving
a formal specification of the typing rules and intrinsically verifying the
type checker with respect to these rules. Concretely, we apply this tech-
nique to a subset of Agda’s internal language, implemented in Agda. Our
development relies on erasure annotations to separate the specification
from the runtime of the type checker. We provide guidelines for making
design decisions for certified core type checkers and evaluate trade-offs.

Keywords: Dependent types · Agda · Correct-by-Construction Pro-
gramming.

1 Introduction
Developers use a variety of techniques to increase trust in the software projects
they are working on, ranging from manual testing, to static type systems and
formal specification and verification. The latter can guarantee adherence of the
software to the specification - as demonstrated by projects such as CompCert
[33], CakeML [31], sel4 [30], JSCert [13], and Verdi Raft [55]. The correctness of
these formal verification efforts relies on the soundness of the tools used [8, 41] -
such as Coq [51], Agda [50], Idris [14, 52], or Isabelle [37].

Being mere pieces of software, formal verification tools can also have bugs
and are not inherently trustworthy. To mitigate this, a common countermeasure
is to build them around a small and trusted kernel, as pioneered by LCF [28],
Coq, and Twelf [39], and later adopted in Lean, Isabelle [32], Idris, and others.
Andromeda developers [11] describe the kernel as “kept as simple as possible, and
it only supports very straightforward type-theoretic constructions which directly
correspond to applications of inference rules and admissible rules.” While this
does increase trust, they also note that “a careful code review of the nucleus will
probably unearth some bugs, and hopefully not very many.” The same can be
said about all other proof assistants, as witnessed by critical bugs that are still
being discovered1, even if these are hard to exploit accidentally [46].
1 github.com/coq/coq/blob/master/dev/doc/critical-bugs.md
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Moving beyond a trusted core, MetaCoq [44, 46] proposes to formally verify
each part of the verification pipeline - from parsing to extraction. However, for
dependently typed languages this can be a herculean task, taking teams many
years to complete. MetaCoq itself began in 2014 with TemplateCoq [34] and is
still ongoing in 2023 [46]. Thus existing approaches fail at either cost-effectiveness
or strong verification assurances. We need techniques that provide a more rigorous
verification process than pure code review, yet remain scalable and feasible for
real-world sized systems.

In this paper we present a design that sits between these two extremes. We
target a dependently typed core language modelled after a subset of Agda’s
internal syntax. Concretely, we contribute the following:

– We formally specify the syntax and typing rules for a dependently typed
language with universes, dependent function types, simple datatypes, and
case expressions.

– We implement a type checker for this language that produces evidence of
well-typedness for each term it accepts.

– We demonstrate the use of erasure annotations [9, 24, 36, 50] to ensure a
clear separation between the parts of the type checker that are needed for
computation, and those only needed for its verification.
The implementation consists of four parts: a well-scoped representation of

the syntax for terms and signatures (Sect. 2, Sect. 4.1, and Sect. 5.1), a simple
environment machine for reduction (Sect. 3.3, Sect. 4.2, and Sect. 5.2), a formal
specification of the typing and conversion judgments (Sect. 3.1, 4.3, and 5.3), and
a correct-by-construction type checker that outputs typing derivations (Sect. 3.2,
4.4, and 5.4).

While the language we present is far from novel [10, 21], the focus of this
paper is on how we formalize the syntax and typing rules, and how these choices
influence the implementation of the type checker.

We introduce our implementation gradually, starting with the simply typed
lambda calculus (STLC) in Sect. 2 and Sect. 3. In Sect. 4 we extend it to
handle dependent function types and universes. Finally, in Sect. 5 we add simple
inductive datatypes and defined symbols.

The source code for the paper is available at github.com/jespercockx/agda-
core/tree/aplas-2024.2

Limitations This paper is an experiment in language engineering rather than
language theory. While we provide a formal specification of the syntax and typing
rules, we refrain from proving any meta-theoretical properties. In particular, we
are not formalising a variant of MLTT but take the typing rules as the source of
truth. For the type checker we aim to strike a balance between formal guarantees
and resources requried, in particular we prove soundness of our type checker but
not completeness, as doing so would require inversion lemmas for our typing
judgments. We also do not check termination or positivity, and hence do not
ensure logical soundness.
2 archived at doi.org/10.4121/6f239149-2526-42a0-8d07-d0e9d6714f7f
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2 Representing well-scoped syntax

In this section, we present a well-scoped syntax for STLC, which relies on an
abstract interface for representing scopes and names.

2.1 Well-scoped syntax for STLC

Well-scoped [3, 12] syntax representations capture the variable names that can
be used within a term. For STLC we define a type of terms parameterised by an
abstract scope α. Since the scope parameter is marked as erased (@0), at runtime
the representation is equivalent to the plain Haskell datatype Term on the right.

data Term (@0 α : Scope name) : Set where
TVar : (@0 x : name) → x ∈ α

→ Term α
TLam : (@0 x : name) → (v : Term (x ◁ α))

→ Term α
TApp : (u : Term α) → (v : Term α)

→ Term α

data Term where
TVar :: Int

-> Term
TLam :: Term

-> Term
TApp :: Term -> Term

-> Term
Variables (TVar) consist of an erased name together with a proof of inclusion

x ∈ α, i.e. that x is in scope α. At runtime, this proof corresponds to a plain de
Bruijn index of type Int. The TLam constructor binds x and ensures that the
body of the lambda v is in a larger scope x ◁ α, where α is the current ambient
scope.

Types in STLC are defined as a simple datatype with a base type TyNat and
a function type TyArr. Since there are no type variables, no scope is needed.

data Type : Set where
TyNat : Type
TyArr : (a b : Type) → Type

2.2 Scopes and their operations

To represent variables, language specifications have to choose between named
variables - which are easy for humans to read but hard to reason about - and de
Bruijn indices or other nameless representations - which are easier to formalize
but notoriously confusing to humans. Our representation combines the best of
both worlds by representing variables as an erased name together with a proof
that it is in scope, which compiles to a de Bruijn index.

While scopes could be represented as a simple list of names, we choose to
work with an abstract interface [29]. This allows us to switch to a more efficient
representation if needed, and be explicit about which operations on scopes we
require. This will prove to be useful later on, as we use scopes to model not just
local variables but also global definitions, which can be much more numerous.
Concretely, the interface we rely on is as follows:

– A type Scope : Set with constructors ∅ for empty scopes, [_] for singleton
scopes, and _<>_ for the disjoint union of two scopes.
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– An operator ∼ for reversing the order of the variables in a scope.
– A subscope predicate _⊆_ : @0 Scope → Scope → Set, with operations for

deciding equality of subscope witnesses and computing the smaller scope’s
complement. A membership predicate _∈_ : @0 name → @0 Scope → Set
is defined as x ∈ α = [ x ] ⊆ α.

– A data structure All : (p : @0 name → Set) → @0 Scope → Set storing an
element of type p x for each name x in the scope, with a lookup operation.
The name argument to the singleton constructor [_] is erased, meaning that

the names provide the extra convenience for writing Agda, but do not have any
impact on the runtime representation of scopes. We do not enforce uniqueness of
names, but the inclusions are unique and their equality is decidable.

As we will see later, certain definitions require a runtime representation of the
scope. For this purpose, we use the type Rezz a x of resurrections [24] of an erased
variable @0 x : a, which contains a non-erased value that is propositionally
equal to x . For example, we will later require a weakening function that converts
Term β to Term (α <> β). In terms of de Bruijn indices it needs the size of α
and Rezz Scope α is precisely that - a runtime representation of the spine, not to
the names contained within it. Generally speaking, we can resurrect a value if
we can recompute it - for example, we can resurrect the scope from the context -
see rezzScope in Sect. 3.1 for usage. This is because the context is indexed by
the scope, so the length of the context is precisely the size of the scope, which is
Rezz Scope α.

Discussion Using well-scoped syntax helps us spot mistakes in the specification
of our language - which matters since many bugs in type systems arise from
incorrect handling of variables.

Our choice to use an abstract type of names rather than a simpler type
of well-scoped de Bruijn indices is motivated by keeping our specification as
readable as possible. It also gives more informative types to syntax operations,
and rules out certain classes of errors that will be easier to miss with plain de
Bruijn indices. For example, a function of type Term (x ◁ y ◁ s)→ Term (y ◁ x ◁ s)
makes it clear that the order of the variables x and y is swapped, while the type
Term (2 + s) → Term (2 + s) does not tell us anything about the order.

Going beyond well-scoped syntax, one might also argue in favour of well-typed
syntax, statically ruling out even more errors. However, defining well-typed syntax
for languages with type-level computation is notoriously tricky [5, 6, 19], and
would force us to define syntax and typing judgment in a mutually dependent
way. In addition, it would not free us from also having to define untyped syntax,
since we cannot assume the input to our type checker to be well-typed.

Finally, since the type checker expects the input to be well-scoped, we funda-
mentally rely on the parser to perform scope-checking. While in principle it is
possible to perform scope and type checking in a single pass, we choose to keep
them separate, thus gaining modularity but requiring the parser to be verified
separately, which we defer to future work.
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3 Type checking STLC

Now that we have a syntax for STLC, let us take a look at three other big pieces:
the specification of typing rules, the type checker, and the evaluator.

3.1 Typing rules

To specify the typing rules of STLC, we need to define a type of contexts which
will store the types of variables. The type of contexts is indexed by the scope of
variables declared. We define Γ , x : t as syntactic sugar for CtxExtend Γ x t.

data Context : @0 Scope name → Set where
CtxEmpty : Context ∅
CtxExtend : Context α → (@0 x : name) → Type → Context (x ◁ α)

The typing judgment TyTerm (rendered as Γ ⊢ u : t) is indexed by a context,
a term, and its type. Each constructor of TyTerm corresponds to a typing rule.

data TyTerm (@0 Γ : Context α) : @0 Term α → @0 Type → Set where
TyTVar : (p : x ∈ α)

→ Γ ⊢ TVar x p : lookupVar Γ x p
TyLam : Γ , x : a ⊢ u : b

→ Γ ⊢ TLam x u : TyArr a b
TyApp : Γ ⊢ u : (TyArr a b)

→ Γ ⊢ v : a
→ Γ ⊢ TApp u v : b

For variables, the type is given by the context. A lambda has a function type,
with the body living in an extended context. Finally, application asserts the type
of the argument matches the domain of the head symbol and the result matches
the codomain.

We choose to state the rules in a declarative way since they serve as part of the
specification and should be easily understood. However, in the implementation
of the type checker below, we follow a bidirectional discipline [26, 40].

3.2 Type checking

To implement a certified type checker, we first define a simple type checking
monad with a failure capability (tcError):

TCM : Set → Set
TCM a = Either TCError a
Type checking function application requires conversion checking, that is -

checking whether two types are equal. Since STLC has no type-level computation,
conversion is just syntactic equality, so the conversion checker returns a proof of
equality or throws an error.

convert : (a b : Type) → TCM (a ≡ b)
convert TyNat TyNat = return refl
convert (TyArr a1 b1 ) (TyArr a2 b2 ) = do
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refl ← convert a1 a2
refl ← convert b1 b2
return refl

convert _ _ = tcError "unequal types"

We use Agda’s do-notation for the TCM monad, which includes the ability
to pattern match on the result of a statement. Here we match the results of the
recursive calls against refl, unifying the left- and right-hand sides of the equality
for the remainder of the do-block.

The type checker itself follows a bidirectional style, with two functions
checkType and inferType that are defined mutually. Both functions return a
typing derivation, where inferType also returns the type of the given term, while
checkType checks it against a specific type.

inferType : ∀ (Γ : Context α) u → TCM (Σ[ ty ∈ Type ] (Γ ⊢ u : ty))
checkType : ∀ (Γ : Context α) u (ty : Type) → TCM (Γ ⊢ u : ty)

inferType ctx (TVar x p) = return (lookupVar ctx x p , TyTVar p)
inferType ctx (TLam x te) = tcError "cannot infer type of lambda"
inferType ctx (TApp u v) = do

(TyArr a b) , gtu ← inferType ctx u
where _ → tcError "application head should have a function type"

gtv ← checkType ctx v a
return (b , TyApp gtu gtv)

We infer types for all terms, except for a lambda. The where clause in the
clause for TApp deals with any cases that are not on the ‘happy path’ where
the result of the recursive call is a TyArr. In checking mode we type check only
lambdas and for any other term we switch modes and perform a conversion check.

checkType ctx (TLam x v) (TyArr a b) = do
gtv ← checkType (ctx , x : a) v b
return (TyLam gtv)

checkType ctx (TLam x v) _ =
tcError "lambda should have a function type"

checkType ctx u ty = do
(gtu , dgty) ← inferType ctx u
refl ← convert gtu ty
return dgty

3.3 Reduction

While it is not yet necessary for the type checker, we also implement an evaluator
for terms, as we will need it for checking dependent types. It is based on a
call-by-value Krivine machine [22, 43].

First, we define environments as lists of terms where each term can refer to
the previous ones. They are indexed by an initial scope α and a final scope β.

data Environment : (@0 α β : Scope name) → Set where
EnvNil : Environment α α
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EnvCons : Environment α β → (@0 x : name) → Term β
→ Environment α (x ◁ β)

The state of the evaluator consists of an environment, the current term it is
focused on, and a stack of arguments it still needs to apply this term to. Both
the focus and the stack can refer to values defined in the environment.

record State (@0 α : Scope name) : Set where
constructor MkState
field

@0 {fullScope} : Scope name
env : Environment α fullScope
focus : Term fullScope
stack : List (Term fullScope)

The machine itself takes one step of reduction at a time, using the step
function. Just s means that another reduction step is possible and Nothing means
that the evaluation is done.

step : (s : State α) → Maybe (State α)
step (MkState e (TVar x p) s) = case lookupEnvironment e p of λ where

(Left _) → Nothing
(Right v) → Just (MkState e v s)

step (MkState e (TApp v w) s) = Just (MkState e v (w :: s))
step (MkState e (TLam x v) (w :: s)) =

Just (MkState (e , x 7→ w) v (map weakenBind s))
step (MkState e (TLam x v) []) = Nothing

Variables are looked up in the context, application arguments are pushed
to the stack, and lambdas move arguments from the stack to the environment
before continuing to evaluate the body.

We start evaluation with an empty environment and an empty stack. When
the machine halts we still have to extract the reduced term from the final state.
For this, we convert the environment to a substitution to apply it to the focus.

Substitutions Subst α β (syntactic sugar α ⇒ β) are a list-like data structure
indexed over two scopes α and β.

data Subst : (@0 α β : Scope name) → Set where
SNil : Subst ∅ β
SCons : Term β → Subst α β → Subst (x ◁ α) β

The function substTerm (not shown here) takes a substitution α ⇒ β, and
applies it to a term in Term α to get a term in Term β.

Using substitution, we can convert the state back to a plain term:
unState : Rezz _ α → State α → Term α
unState r (MkState e v s) = substTerm (envToSubst r e) (applys v s)

Since step can be applied to ill-typed terms, repeated application does not
necessarily terminate. Hence to define a multi-step reduction, we use a fuel
argument of type Nat that indicates a maximum number of reduction steps.
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reduceState : Rezz _ α → (s : State α) → Nat → Maybe (Term α)
reduceState r s zero = Nothing
reduceState r s (suc fuel) = case (step s) of λ where

(Just s’) → reduceState r s’ fuel
Nothing → Just (unState r s)

reduce : Rezz _ α → (v : Term α) → Nat → Maybe (Term α)
reduce {α = α} r v = reduceState r (makeState v)

Discussion Using substitution to extract a term from the final state duplicates the
terms present in the environment if they occur more than once in the result. To
avoid this, we could add let-expressions to our language and use them to maintain
the environments generated by the machine. However, a naive implementation of
this approach introduces let-bindings for unused terms (user-defined, as well as
generated from the machine’s state) which in practice renders it unusable. We
could remove these spurious lets with a garbage-collection-like procedure, but
such a procedure would add extra complexity, and with it extra opportunities for
bugs. So while the duplication caused by substitution is an annoying downside,
it leads to more manageable terms in the output.

An alternative to using fuel is the Delay monad [1, 23]. In practice we ran into
complications when trying to implement it: using Delay as part of a monad stack
requires lifting other monads through it, which requires an altered definition to
lift through later. To define Delay as a monad transformer we also need to ensure
that m it transforms is strictly positive - either through a container encoding or
implementing a new extension of Agda.

4 Dependent function types and universes

In this section, we extend STLC defined in Sect. 2 and Sect. 3 with depen-
dent function types (Π-types) and a universe hierarchy, thus getting a minimal
dependently typed language.

The main change in the syntax is that types can now contain variables and
hence also have to be scoped. Type conversion also becomes more complicated,
as it needs to reduce terms.

4.1 Syntax

As types now contain terms, they are now also indexed over a scope. Concretely,
we represent types as a pair of a term together with its sort. These sorts can be
inserted by the elaborator if needed.

data Sort α where
STyp : Nat → Sort α

record Type α where
inductive; constructor El
field typeSort : Sort α

unType : Term α
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One further change is that we wrap the argument to function application in
the Elim datatype, which will prove useful for future extensions (Sect. 5).

data Term α where
TVar : (@0 x : name) → x ∈ α → Term α
TLam : (@0 x : name) (v : Term (x ◁ α)) → Term α
TApp : (u : Term α) (es : Elim α) → Term α
TPi : (@0 x : name) (u : Type α) (v : Type (x ◁ α)) → Term α
TSort : Sort α → Term α

data Elim α where
EArg : Term α → Elim α

Contexts are the same as before, except with types now also being well-scoped.
data Context : @0 Scope name → Set where

CtxEmpty : Context ∅
CtxExtend : Context α → (@0 x : name) → Type α → Context (x ◁ α)

4.2 Reduction

Evaluation of functions is the same as for STLC. Π-types and sorts do not reduce.

4.3 Typing and conversion rules

In this section, we extend the typing judgment with rules for Π-types and sorts.
We also add a rule to convert a derivation between two types, which in turn
requires the definition of a conversion judgment.

Since the context can be considered an ‘input’ to the typing judgment, our
typing rules do not enforce well-formedness of the types in the context but instead
assume it. However, they do enforce well-formedness of the type – as well as the
term itself.

Typing judgments The form of the typing judgment is the same as before, apart
from the added scope argument to the type.

data TyTerm (@0 Γ : Context α) : @0 Term α → @0 Type α → Set where
We omit the rule for variables since it is precisely the same as in Sect. 3. In

the rule for TLam, the name of the variable in u is x while the variable in b is
named y, so we need to rename the latter using renameTopType, which maps
Type (x ◁ α) to Type (y ◁ α).

TyLam : Γ , x : a ⊢ u : renameTopType r b
→ Γ ⊢ TLam x u : El k (TPi y a b)

TyAppE : {b : Type α}
→ Γ ⊢ u : a
→ TyElim Γ u e a b
→ Γ ⊢ TApp u e : b

The application rule uses the auxiliary typing judgment TyElim, which checks
that the head symbol is of Π-type and the argument type matches the domain.
To get the type of the application it substitutes the argument into the codomain.



10 B. Liesnikov and J. Cockx

data TyElim (@0 Γ : Context α) :
(@0 u : Term α) (@0 e : Elim α) (@0 t a : Type α) → Set where

TyArg : (unType c) ∼= TPi x a b
→ Γ ⊢ v : a
→ TyElim Γ u (EArg v) c (substTopType r v b)

For computing the sort of Π-types and sorts, we rely on two functions piSort
(maximum) and sucSort (successor).

TyPi : Γ ⊢ u : sortType k
→ Γ , x : (El k u) ⊢ v : sortType l
→ Γ ⊢ TPi x (El k u) (El l v) : sortType (piSort k l)

TyType : Γ ⊢ TSort k : sortType (sucSort k)
Finally, the conversion rule maps a typing derivation between convertible

types.
TyConv : Γ ⊢ u : a → (unType a) ∼= (unType b) → Γ ⊢ u : b

Conversion rules We use an untyped conversion judgment Conv (syntactic sugar
∼=), since it allows us to define conversion separately from typing. Once again,
the rules themselves closely follow the literature[20, 38].

The two main conversion rules are CRedL and CRedR that allow us to reduce
the left- and right-hand side respectively. These two rules use the predicate
ReducesTo v w expressing that v reduces to w, when given sufficient fuel.

@0 ReducesTo : (v w : Term α) → Set
ReducesTo {α = α} v w = Σ[ ( r , f ) ∈ Rezz _ α × Nat ]

reduce r v f ≡ Just w
Aside from these two rules, conversion is reflexive and respects all term

constructors.
data Conv where

CRedL : @0 ReducesTo u u’
→ u’ ∼= v → u ∼= v

CApp : u ∼= u’ → w ≃ w’
→ TApp u w ∼= TApp u’ w’

For Π-types and lambdas, we need to rename the variable on one side in
order to bring both terms to the same scope.

CPi : unType a ∼= unType a’
→ unType b ∼= renameTop r (unType b’)
→ TPi x a b ∼= TPi y a’ b’

CLam : u ∼= renameTop r v
→ TLam y u ∼= TLam z v

Discussion Untyped conversion allows us to simplify conversion rules, but prevents
us from easily adding type-directed conversion rules such as eta-expansion and
proof irrelevance. Theoretically, it would be possible to ask for a typing derivation
locally when applying these rules, but that would require conversion to at least
maintain a typing context. Moreover, implementing a type checker that can
provide these derivations would require a proof of subject reduction, which we
chose not to develop.

This problem could be circumvented by adding a typing rule that axiomatises
subject reduction. Since reduction is already part of the trusted code base, this
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does not further compromise soundness. However, it would complicate any future
attempts to do metatheory.

4.4 Type checking and conversion checking

Conversion-checker The conversion checker has the following interface:
convert : ∀ Γ (t q : Term α) → TCM (t ∼= q)
Since checking conversion requires reduction, we extend the type checking

monad TCM with a field storing a read-only fuel value. The top-level convert
function gets this value and passes it to the auxiliary convertCheck, which recurses
on it. The function reduceTo takes this fuel and a term v and returns the reduced
term w together with a witness of type ReducesTo v w.

convertCheck : Nat → (r : Rezz _ α) → ∀ (t q : Term α) → TCM (t ∼= q)
convertCheck zero _ _ _ = tcError "need more fuel"
convertCheck (suc fl) r t q = do

rgty ← reduceTo r t fl
rcty ← reduceTo r q fl
case (rgty , rcty) of λ where

To compare two variables, we use decidable equality of variable indices x ∈ α.
If the indices are equal, we match on refl to unify them so we can use CRefl.

(TVar x p ⟨ rpg ⟩ , TVar y q ⟨ rpc ⟩) →
CRedL rpg <$> CRedR rpc <$>

ifDec (decIn p q)
(λ where {{refl}} → return CRefl)
(tcError "two different variables aren’t convertible")

Other terms are checked by a recursive descent. For example, for lambdas we
check convertibility of the bodies, renaming variables as needed.

(TLam x u ⟨ rpg ⟩ , TLam y v ⟨ rpc ⟩) →
CRedL rpg <$> CRedR rpc <$>
CLam <$> convertCheck fl (rezzBind r) u (renameTop r v)

Type checker As before, we follow a bidirectional discipline, with only TyLam
in checking mode again. When we encounter an inferrable term in a checkable
position, we use the TyConv rule to switch modes.

checkCoerce : ∀ Γ (t : Term α) → Σ[ ty ∈ Type α ] Γ ⊢ t : ty
→ (cty : Type α) → TCM (Γ ⊢ t : cty)

checkCoerce ctx _ (ty , dty) cty =
TyConv dty <$> convert ctx (unType ty) (unType cty)

We discuss two cases for illustrative purposes, the others are similar. To type
check a lambda, we need to reduce the type before checking that it is a Π.

checkType ctx (TLam x u) (El s ty) = do
let r = rezzScope ctx
fuel ← tcmFuel
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(TPi y tu tv) ⟨ rtp ⟩ ← reduceTo r ty fuel
where _ → tcError "couldn’t reduce a term to a pi type"

let cp = CRedR rtp CRefl
d ← checkType (ctx , x : tu) u (renameTopType r tv)
return $ TyConv (TyLam {k = s} d) cp

Type checking an application symbol relies on the auxiliary function inferElim.
inferType ctx (TApp u e) = do

tu , gtu ← inferType ctx u
a , gte ← inferElim ctx u e tu
return $ a , TyAppE gtu gte

The function inferElim itself again reduces the type to a Π-type and checks
the argument against its domain.

inferElim ctx u (EArg v) tu = do
let r = rezzScope ctx
fuel ← tcmFuel
(TPi x at rt) ⟨ rtp ⟩ ← reduceTo r (unType tu) fuel

where _ → tcError "couldn’t reduce head type to a pi type"
gtv ← checkType ctx v at
let tytype = substTopType r v rt

gc = CRedL rtp CRefl
return $ tytype , TyArg gc gtv

5 Inductive types

In this section, we expand the language with parameterised - but not indexed
- inductive types and case-expressions. We also add globally defined symbols.
From an infrastructure point of view the main addition are a set of global scopes
- defScope for global definitions, conScope for constructor names, and fieldScope
for the fields of each constructor - and signature of global definitions (datatypes
and symbols).

5.1 Syntax

There are two new constructors added to the syntax. TDef represents a global
symbol, where the name d has to be in the global scope of definitions defScope.
TCon is a fully applied datatype constructor - it takes the name of the constructor,
an inclusion proof in the global scope of constructors, and a list of arguments
(represented as a substitution).

data Term α where
TDef : ∀ (@0 d) → d ∈ defScope → Term α
TCon : ∀ (@0 c) (cp : c ∈ conScope) → (fieldsOf cp) ⇒ α → Term α

We also have a new constructor ECase for Elim, representing a case expression
with a list of branches and a return type or motive [35], which can depend on
the scrutinee. As this is a constructor of Elim, the scrutinee itself is implicit.
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data Elim α where
ECase : (bs : Branches α cs) (m : Type (x ◁ α)) → Elim α

Each branch matches on a specific constructor c. The scopes ensure that the
term on the right-hand side can access all the arguments to the constructor. Since
scopes are extended to the left but argument lists grow to the right, the order of
the scope has to be inverted (~).

data Branch α where
BBranch : (@0 c : name) (c∈cons : c ∈ conScope)

(let args = fieldsOf c∈cons)
→ Rezz _ args → Term (~ args <> α) → Branch α c

The type Branches α cs requires that there is one branch for each constructor
in the scope cs, thus ensuring coverage.

data Branches α where
BsNil : Branches α ∅
BsCons : Branch α c → Branches α cs → Branches α (c ◁ cs)

Signatures The scopes for defined symbols, constructors, and fields are collected
in a type of Globals:

record Globals : Set where
field defScope : Scope name

conScope : Scope name
fieldScope : All (λ _ → Scope name) conScope

The above provides only the names globally available, so we introduce another
record Signature that associates a definition to each name in defScope: either a
type and value for a global symbol, or a datatype declaration.

Signature : Set
Signature = All (λ _ → Type ∅ × Definition) defScope

data Definition where
FunctionDef : (funBody : Term ∅) → Definition
DatatypeDef : (datatypeDef : Datatype) → Definition

Datatype declarations DatatypeDef store a sort dataSort, telescopes for param-
eters dataParTel, and a list of constructors dataConstructors. Both the telescopes
and the list of constructors are also given an (erased) scope of the names they
declare.

record Datatype where
field @0 dataPars : Scope name

@0 dataCons : Scope name
dataSort : Sort dataPars
dataParTel : Telescope ∅ dataPars
dataConstructors : All (λ c → Σ (c ∈ conScope)

(Constructor dataPars c))
dataCons
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Each constructor definition stores a telescope for the types of its arguments.
Since each part of the signature is guided by scopes, there is no risk of forgetting
an argument when defining a datatype or its constructors.

record Constructor pars c cp where
field conTelescope : Telescope pars (fieldsOf cp)

There are three well-formedness properties that we assume to hold:

1. From the information stored in the Datatype record we can compute its type,
which should match the type given in the Signature.

2. The names of the constructors of each datatype should be distinct.
3. The types in each conTelescope should be no larger than dataSort.

5.2 Reduction

For the evaluator, we need new rules for unfolding defined symbols and for
evaluating case expressions. For the latter, when the head symbol is reduced to a
constructor, and the top element on the stack is a case elimination, we pick the
appropriate branch, substituting the arguments into its body.

step sig (MkState e (TDef d q) s) = case getBody sig d q of λ where
(Just v) → Just (MkState e (weakenGlobal v) s)
Nothing → Nothing

step sig (MkState e (TCon c q vs) (ECase bs _ :: s)) =
case lookupBranch bs c q of λ where

(Just (r , v)) → Just $ MkState (extendEnvironment (revSubst vs) e)
v
(weakenRevEl r s)

Nothing → Nothing

5.3 Typing and conversion rules

Conversion We define three new conversion judgments for branches, lists of
branches, and substitutions respectively.

data ConvBranch {@0 α} : (@0 b1 b2 : Branch α cn) → Set
data ConvBranches {@0 α} : (@0 bs1 bs2 : Branches α cs) → Set
data ConvSubst {@0 α} : (@0 us1 us2 : β ⇒ α) → Set
Constructors are convertible if they have the same name and convertible

arguments.
data Conv {α} where

CCon : (@0 cp : c ∈ conScope) {@0 us vs : fieldsOf cp ⇒ α}
→ ConvSubst us vs → TCon c cp us ∼= TCon c cp vs

Two case statements are convertible if their motives are convertible, and for
each constructor the corresponding bodies are convertible.

CECase : (bs bp : Branches α cs)
(ms : Type (x ◁ α)) (mp : Type (y ◁ α))
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→ renameTop {y = z} r (unType ms) ∼= renameTop r (unType mp)
→ ConvBranches bs bp → ECase bs ms ≃ ECase bp mp

Global references TDef are convertible when the inclusions are equal, same as
for TVar.

Typing A defined symbol has the type indicated in the signature sig.
data TyTerm {α} Γ where

TyDef : (@0 p : f ∈ defScope)
→ Γ ⊢ TDef f p : weakenGlobalType (getType sig f p)

A constructor is well typed if its name c belongs to a datatype d and
its arguments are typeable with respect to the telescope conTelescope of this
constructor. The type of the constructor is computed by the constructorType
function, which returns a type of the form TDef d dp.

TyCon : ( @0 dp : d ∈ defScope) (@0 dt : Datatype)
→ ( @0 cq : c ∈ dataCons dt)
→ @0 getDefinition sig d dp ≡ DatatypeDef dt
→ (let (cp , con) = lookupAll (dataConstructors dt) cq)
→ { @0 pars : dataPars dt ⇒ α}
→ { @0 us : fieldsOf cp ⇒ α}
→ (let ds = substSort pars (dataSort dt))
→ TySubst Γ us (substTelescope pars (conTelescope con))
→ Γ ⊢ TCon c cp us : constructorType d dp c cp con ds pars us

Substitutions are typed with respect to a telescope: each term in the substi-
tution must be typeable with the corresponding type from the telescope.

A branch is well-typed if its body is well-typed with respect to a specialised
motive. The motive is specialised to the constructor, which is applied to fresh
variables from a context extended with the constructor arguments.

data TyBranch {α} Γ dt ps rt where
TyBBranch : (c∈dcons : c ∈ dataCons dt)
→ (let (c∈cons , con ) = lookupAll (dataConstructors dt) c∈dcons

ctel = · · · ; bsubst = · · · )
→ ∀ {rf } (rhs : Term (~ fieldsOf c∈cons <> α))
→ TyTerm (addContextTel ctel Γ ) rhs (substType bsubst rt)
→ TyBranch Γ dt ps rt (BBranch c c∈cons rf rhs)

Finally, the TyBranches judgment simply checks well-typedness of each branch.

5.4 Type and conversion checker

Now that the typing rules are set, writing the type checker is mostly a mechanical
task. Thus for brevity, we omit the actual definitions in this section and instead
highlight the main challenges.

Representing type constructors Since we model type constructors as TDef we
have to extract the parameters from it manually, via reduction to a TApp and a
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traversal of the eliminations in it. This is to ensure that the arguments to TDef
are well-typed with respect to the declaration in the signature. Fundamentally,
it is not a challenge, but in hindsight, having a dedicated constructor for type
constructors would have made the implementation easier.

Coverage checking During the type checking of a TCase elimination we have to
ensure that the Branches cover all constructors of the datatype. The type checker
can tell us that the branches cover a certain scope β, we need to ensure that it
matches dataCons dt, as required by the rule. To do this, we need to compare the
run-time representation of both scopes, hence they need to be resurrected. We do
it via the function allBranches : Branches α β → All (λ c → c ∈ conScope) β,
and the list of all constructors coming from the dataConstructors field of dt. Since
both contain an inclusion proof c ∈ conScope associated with each c, we can
establish their (in-)equality. In cases like this we find it helpful to think about the
runtime representation of any decision taken, with a positive decision supported
by an erased proof.

Well-scoped substitutions Since names ensure a lot of important correspondences,
working with well-scoped substitutions makes it much easier to see when a
substitution can be applied to a term - or how it should be lifted to do so. It
also eliminates corner cases where we know statically that the sizes of two scopes
are the same, which is helpful during development and reduces the number of
potential bugs.

6 Related Work

Minimising the trusted computing base (TCB) of type checkers and proof checkers
is not a new idea. It originated with de Bruijn [15], but only recently it has
become possible to formalise the specification of a real-world core language and
a few of those have been done. Below, we list related works in the order of
decreasing topic proximity.

MetaCoq [44, 45] is a formalization of Coq’s core language in Coq. It origi-
nated from a formalisation by Barras [16] and a more recent metaprogramming
development known as Template Coq [7, 34]. The main difference with MetaCoq
is that we aim to develop a certified type checker with minimal metatheory,
while MetaCoq wants to be a full formalization of the Coq core. Aside from that,
we also make a few different design decisions. First, we rely on Agda’s erasure
annotations instead of the Prop universe in Coq. Second, we use a well-scoped
representation instead of plain de Bruijn indices. Third, while MetaCoq also
uses a Krivine machine for reduction but it has a separate specification of the
reduction rules, so the MetaCoq evaluator is not part of the TCB, while ours is.
Fourth, our typing judgments assume well-formedness of contexts rather than
requiring a proof of it for every rule. Fifth, we formalise only the declarative style
of typing rules, but follow MetaCoq in using a bidirectional style for the type
checker.



Building a CbC Type Checker for a DT Core Language 17

Adjedj et al. [4] formalise meta-theory for MLTT with Π, Σ , natural numbers,
and an Id type. They also develop a simple complete and correct type checker
for this language. There are four big differences between our works. On the
surface, as MetaCoq, they use plain de Bruijn indices with Coq definitions
derived using AutoSubst [42, 47]. On a higher lever, the variant of MLTT they
formalise uses recursors for the two induction types instead of pattern-matching.
They also formalise typed reduction, with one of the main contributions being
a reformulation of work by Abel et al.[2] to avoid induction-recursion. While
we are interested in typed reduction, the complications they run into arise from
meta-theoretical proofs. The techniques we develop are more light-weight since
we do not do meta-theory. At last, their approach does not immediately allow
extraction, while ours does, due to erasure.

Strub et al. [48] develop a self-certifying type checker for F*. This work
requires a developed metatheory of the language in Coq, which we do not have.
Many of the design decisions are similar to MetaCoq, so the differences mentioned
there apply here too. They define reduction in terms of substitution, while we
use a Krivine machine. Finally, we argue that due to focus on readability and
simplicity, our design is overall less complicated and more compact.

Carneiro [17] develops a type checker (“external verifier”) for Lean 4 in Lean.
We believe the general direction of our works to be similar, but at the moment
the typing judgement and the type checker are independent, thus providing no
formal correctness or completeness guarantees. This aside, they make a novel
choice of using single judgement for both typing and equality, while we pick
a more conventional separate representations. Similar to Adjedj et al. [4] they
implement MLTT with typed conversion and recursors.

Other related works fall in two camps. Stitch [27] and CakeML [49] are
verified type checkers for simpler type systems, so they do not face many of
the same challenges. Others formalise the specification and the metatheory
- System DC [53] does this for Dependent Haskell, Abel et al. [2] focuses on
decidability of conversion specifically, and Wieczorek and Biernacki [54] mechanise
a normalisation-by-evaluation algorithm. These works are complementary to ours,
they do meta-theory but do not develop a certified type checker, while we do the
opposite.

7 Conclusion and Future Work

This paper presents a first step towards the goal of implementing a correct by
construction type checker for a core language for Agda and moving from a trusted
computing base to a trusted theory base.

In the process, we develop a set of techniques that can be useful for designing
certified type checkers in general. We argue that using well-scoped syntax provides
invaluable guidance, while not imposing too much of a proof burden on the
developer. Using names rather than de Bruijn indices is useful for the same
reason. Finally, we propose erasure annotations as an important tool to make
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the language developer more aware of the runtime behaviour of the code they
are writing.

Future work There are many potential prospects to reach feature parity with
Agda’s internal language. Practically, we would like to add a pipeline to connect
our existing development to Agda’s compiler. We would also like to implement
some core features of Agda, like indexed inductive datatypes, which would require
a verified unification procedure, eta-equivalence, definitional irrelevance, and
universe polymorphism. We plan to add termination and positivity checking, but
we would like to procure certificates for these properties from Agda’s compiler,
which should simplify the implementation of the core checker.

Regarding applications, we would like to try using our embedded core language
for type-safe metaprogramming [7, 25, 44] to automate tedious proofs, as well
as for exchanging programs and proofs with other languages [18], enabling
collaboration between different communities.
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