
How to Tame your Rewrite Rules
Jesper Cockx1, Nicolas Tabareau2, and Théo Winterhalter2

1 Chalmers, Göteborg, Sweden
2 Gallinette Project-Team, Inria Nantes France

Dependently typed languages such as Coq and Agda can statically guarantee the correctness
of our proofs and programs. We can extend these languages with new features using rewrite
rules [5]. For example, exceptional type theory [8] introduces two new constructions raise : ∀A.A
and catch : ∀P. P true → P false → P raise → ∀b. P b together with new rewrite rules such as
catchP pt pf pr raise _ pr. However in general, by adding a wrong rewrite rule, the language
may lose any or all of its good properties like decidability of typechecking, canonicity, or even
type safety. Moreover, these new rewrite rules may interact badly with other extensions.

We present a framework to add user-defined (higher-order and non-linear) rewrite rules to
type theory in a safe and modular way. In particular, we provide checks to ensure type safety
as well as decidability of conversion and thus type-checking, which in turn require checking the
confluence and termination properties. We are currently working on extensions to both Agda
and Coq to provide user-defined rewrite rules, where the user can pick their desired level of
(un)safety by enabling or disabling individual checks (for confluence, termination, . . . ).

Ensuring subject reduction. In the current implementation of rewrite rules in Agda, ‘bad’
rewrite rules can destroy not only normalization and canonicity but also subject reduction:

• Exploiting non-confluence: Let A : Set with rewrite rules A _ (N → N) and A _ (N →
Bool), then (λ(x : N). x) 0 : Bool. But this reduces to 0 which does not have type Bool.

• Rewriting already defined symbols: Let Box (A : Set) : Set be a datatype with a single
constructor box : (x : A) → Box A and unbox : Box A → A defined by unbox (box x) = x.
If we add a rewrite rule Box (N → N) _ Box (N → Bool), then we have unbox (box (λ(x :
N). x)) 0 : Bool but this term again reduces to 0, which does not have type Bool.

The second example exploits the fact that unboxA (boxB x) _ x even when A ̸= B. Here
Agda implicitely assumes that Box is injective, enforcing the necessary conversion by typing.
If we were to check for conversion in the reduction rule for unbox (as we do for user-defined
rewrite rules) evaluation would be stuck but subject reduction would be preserved.

Both these examples break injectivity of Π types, which is a crucial lemma in most proofs
of subject reduction. Hence we infer that we should check confluence of the rewrite rules, and
we should only allow rewrite rules on ‘fresh’ (i.e. postulated) symbols. From these natural
restrictions, we can derive injectivity of Π types and hence re-establish subject reduction.

Checking confluence and termination. Confluence and termination of higher-order rewrite
rules are both known and well-studied problems (see for example [7] and [3]). However, checking
termination usually requires confluence, and checking confluence usually requires termination.
We propose to resolve this dilemma by fixing a deterministic rewriting strategy _s⊆_, which
is complete in the sense that whenever u _ v, there exists some w such that both u _∗

s w and
v _∗

s w. We can then check confluence and termination:

1. First, we check termination of _. If it succeeds, we don’t know yet that _ is terminating
(because the termination check assumes confluence), but we do know _s is terminating
(since it is included in _ and confluent by construction).



How to Tame your Rewrite Rules Cockx, Tabareau, Winterhalter

2. Second, we check confluence of _, using _s for joining critical pairs. Because _s⊆_
and _s is complete, this check succeeds iff _ is confluent.

3. Finally, we conclude that _ is terminating, using point 1. and the confluence of _.

Rewriting modulo an equational theory. In many proof assistants, conversion includes
not just computation rules (e.g. β-reduction) but also type-directed rules (e.g. η-conversion).
Hence we consider conversion up to an equational theory ∼. E.g. this relation can include
η-rules for functions or records, or a definitionally proof-irrelevant universe of propositions [6].

If rewrite rules do not respect ∼, we run into trouble. For example, let f : ∀A. (A → A) →
Bool with a rewrite rule fA (λx. x) _ true and consider the term f⊤ (λx. tt). The argument
λx. tt is not of the form λx. x, yet the rewrite rule should still apply since tt ∼ x : ⊤!

As such we must ensure that rewrite rules are well-behaved with respect to the equational
theory: if a ∼ a′ : A and a _ b, then there must exist b′ such that1 b ∼ b′ : A and a′ _∗ b′.
With this property we are able to deduce that conversion between two terms Γ ⊢ t = u : A is
equivalent to t _∗ t′ and u _∗ u′ and Γ ⊢ t′ ∼ u′ : A. This allows us to prove2 injectivity of Π
types and check confluence in the presence of a non-trivial equational theory.

Conclusion. User-defined rewrite rules allow you to extend the power of a dependently typed
language on a much deeper level than normally allowed. We already mentioned exceptional type
theory; other potential applications include adding new equations to neutral terms [1], defining
quotient types [4] or higher inductive types, and implementing guarded type theory [2]. By
having access to the necessary checks you can be confident that no important properties will
break by accident, while you still have the option to ignore the checks when required by your
application. Soon rewrite rules and the corresponding safety checks are coming to both Agda
and Coq. We cannot wait to see what other uses you will come up with!

References
[1] Guillaume Allais, Conor McBride, and Pierre Boutillier. New equations for neutral terms: A sound

and complete decision procedure, formalized. In Dependently-typed Programming, 2013.
[2] Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional type theory with guarded recursive types

qua fixed points on universes. In LICS ’13.
[3] Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant. Dependency pairs termination in

dependent type theory modulo rewriting. unpublished, 2019.
[4] Guillaume Brunerie. quotients.agda. https://github.com/guillaumebrunerie/initiality/blob/

reflection/quotients.agda.
[5] Jesper Cockx and Andreas Abel. Sprinkles of extensionality for your vanilla type theory. In TYPES

’16.
[6] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional Proof-

Irrelevance without K. POPL ’19.
[7] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical

computer science, 1998.
[8] Pierre-Marie Pédrot and Nicolas Tabareau. Failure is Not an Option An Exceptional Type Theory.

In ESOP ’18.

1This does not assume that b : A, the type A is simply a hint to guide the equational theory.
2Further assuming Π A′ B′ ∼ Π C′ D′ is equivalent to A′ ∼ C′ and B′ ∼ D′

2

https://github.com/guillaumebrunerie/initiality/blob/reflection/quotients.agda
https://github.com/guillaumebrunerie/initiality/blob/reflection/quotients.agda

