
Overlapping and Order-Independent Patterns
Definitional Equality for All

Jesper Cockx, Frank Piessens, and Dominique Devriese

DistriNet, KU Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract. Dependent pattern matching is a safe and efficient way to
write programs and proofs in dependently typed languages. Current
languages with dependent pattern matching treat overlapping patterns on
a first-match basis, hence the order of the patterns can matter. Perhaps
surprisingly, this order-dependence can even occur when the patterns do
not overlap. To fix this confusing behavior, we developed a new semantics
of pattern matching which treats all clauses as definitional equalities, even
when the patterns overlap. A confluence check guarantees correctness
in the presence of overlapping patterns. Our new semantics has two
advantages. Firstly, it removes the order-dependence and thus makes the
meaning of definitions clearer. Secondly, it allows the extension of existing
definitions with new (consistent) evaluation rules. Unfortunately it also
makes pattern matching harder to understand theoretically, but we give
a theorem that helps to bridge this gap. An experimental implementation
in Agda shows that our approach is feasible in practice too.

Keywords: Type theory, dependent pattern matching, overlapping pat-
terns, confluence, Agda

1 Introduction

Pattern matching is a mechanism to write programs by case distinction and
recursion. Definitions by pattern matching are given by a set of equalities called
clauses, for example:

plus : Nat→ Nat→ Nat

plus zero n = n
plus (suc m) n = suc (plus m n)

(1)

If the patterns of the clauses of a definition overlap, it is customary to choose
the first clause that gives a match. This is the first-match semantics of pattern
matching. For example, in the following definition the last clause cannot hold as
a definitional equality but holds only when the first two clauses don’t match:

equal : Nat→ Nat → Bool

equal zero zero = true

equal (suc m) (suc n) = equal m n
equal m n = false

(2)

In a language with dependent types, pattern matching allows us to write
not just programs, but also proofs. For example, the following is a proof that
plus m zero ≡ m for all m : Nat:1

lemma : (m : Nat)→ plus m zero ≡ m
lemma zero = refl

lemma (suc m) = cong suc (lemma m)
(3)

If we are not careful, it is very well possible to give incorrect proofs by pattern
matching. For example, a case analysis might be incomplete, or a recursive proof
might become infinitely large when we expand it. This leads to an inconsistent
logic. Hence certain restrictions are put on definitions by pattern matching to
ensure totality [Coq92]. These restrictions allow us to translate definitions by
pattern matching to type theory with only the theoretically simpler eliminators
plus the K axiom [GMM06]. This ensures that definitions by pattern matching
are correct with respect to the core theory, but also limits the expressiveness of
the language.

In order to guarantee completeness, it is required that patterns must form a
covering, i.e. arise as the patterns at the leaves of a case tree. An example of a
case tree for a function half : Nat→ Nat is given in Fig. 1. This case tree shows
that the patterns zero, suc zero, and suc (suc k) together form a covering,
ensuring completeness of functions that use these patterns.

half : Nat → Nat

half zero = zero

half (suc zero) = zero

half (suc (suc n)) = suc (half n)

n

zero 7→ zero

(suc m)

{
suc zero 7→ zero

suc (suc k) 7→ suc (half k)

Fig. 1. Case trees such as the one on the right are used to check completeness. In each
internal node, one variable is chosen and replaced by all possible constructors of its
type applied to fresh variables.

Some languages with dependent pattern matching (such as Agda [Nor07])
allow more general pattern sets, but translate them to a covering internally. In
this translation, overlapping patterns are treated on a first-match basis, hence
the result of the translation depends on the order of the clauses.

Perhaps surprisingly, this order-dependence occurs even when the patterns
do not overlap. For example, if we define disjunction on booleans as in [Ab12]:

or : Bool→ Bool → Bool

or false false = false

or true false = true

or x true = true

(4)

1 The identity type a ≡ b expresses equality of two terms a, b : A. Here refl is a proof
that m ≡ m and cong f p is a proof that f x ≡ f y if p is a proof that x ≡ y.

then it does not satisfy the definitional equality2 or x true = true, while this is
the case if the last clause is given first instead, leading to unexpected results for
an inexperienced user. This is a sign of bad abstraction.

The goal of this paper is to make dependent pattern matching more amenable
to equational reasoning. We do this by interpreting each clause directly as a
definitional equality, even when the patterns overlap. In particular, our interpre-
tation does not depend on the order of the patterns. This also allows us to give
definitions with overlapping patterns, which can be used to extend a function
with extra evaluation rules. For example, we allow the following definition:

plus : Nat→ Nat → Nat

plus zero y = y
plus (suc x) y = suc (plus x y)
plus x zero = x
plus x (suc y) = suc (plus x y)

(5)

While all the examples in this introduction only use simple types, our approach is
general enough to cope with inaccessible patterns, which are specific to dependent
pattern matching. Section 6 includes two examples of dependent functions with
overlapping patterns.

By making all clauses hold as definitional equalities, definitions by pattern
matching feel more like mathematical definitions, rather than sequential program
instructions. However, we lose the ability to translate pattern matching to the
use of eliminators, making it more complex to understand theoretically.

Contributions

– We present an extended form of dependent pattern matching that allows
patterns that do not necessarily form a covering (e.g. they might overlap),
while treating all clauses as definitional equalities.

– We give a generalized criterion for completeness of overlapping patterns.
– We describe a simple criterion that can be used to check the confluence of

definitions with overlapping patterns.
– We verify the feasibility of our approach by extending the Agda language,

and give some simple examples that show how overlapping patterns can be
used to add extra computation rules to existing functions.

– We formulate and prove a theoretical result that gives for every definition of
a function f with overlapping patterns another definition of a function f ′ of
which the patterns form a covering such that f ′ is extensionally equal to f .

Outlook In Sect. 2, we give our notations and conventions for this paper. In
Sect. 3, we describe the three problems with dependent pattern matching in
current languages that we try to solve. In Sect. 4, we give a general description
of our extended form of dependent pattern matching. In Sect. 5, we describe how
2 Two terms are called definitionally equal if they have the same normal form.

the correctness of these extended definitions by pattern matching can be checked.
In Sect. 6, we give some examples of how our extended form of pattern matching
can be used. In Sect. 7, we give a theoretical result that says that each definition
that uses our extension is extensionally equal to a classical one.

2 Conventions and Terminology

Type Theory. As our version of type theory, we use Luo’s Unified Theory
of Dependent Types (UTT) with dependent products, inductive families, and
universes [Luo94]. We omit the meta-level logical framework and the impredicative
universe of propositions because they are not needed for our current work. The
formal rules of the version of UTT we use are summarized in Fig. 2.

(Ctx-empty)
ε valid

Γ ` A : Seti x /∈ FV (Γ)
(Ctx-ext)

Γ (x : A) valid
Γ valid x : A ∈ Γ (Var)

Γ ` x : A

Γ ` t : A1 Γ ` A1 = A2 : Seti (=Ty)
Γ ` t : A2

Γ valid (List-empty)
Γ ` ε : ε

Γ ` t̄ : ∆ Γ ` t : A[∆ 7→ t̄]
(List-ext)

Γ ` t̄ t : ∆(x : A)
+ equality rule

Γ valid (Set)
Γ ` Seti : Seti+1

Γ ` A : Seti Γ (x : A) ` B : Setj
(Π)

Γ ` (x : A)→ B : Setmax(i,j)

+ equality rule

Γ (x : A) ` t : B
(λ)

Γ ` λ(x : A). t : (x : A)→ B
+ equality rule

Γ (x : A) ` B : Seti Γ ` f : (x : A)→ B Γ ` t : A
(App)

Γ ` f t : B[x 7→ t]
+ equality rule

Γ (x : A) ` t : B Γ ` s : A
(β)

(λ(x : A). t) s = t[x 7→ s] : B[x 7→ s]

Γ ` f : (x : A)→ B x /∈ FV (f)
(η)

λ(x : A). f x = f : (x : A)→ B

+ reflexivity, symmetry, and transitivity rules for =

Fig. 2. The core formal rules of UTT, including dependent function types (x : A)→ B,
an infinite hierarchy of universes Set0, Set1, Set2, . . ., and βη-equality.

Contexts and substitutions. We use Greek capitals Γ,∆, . . . for contexts,
capitals T,U, . . . for types, and small letters t, u, . . . for terms. A list of terms is
indicated by a bar above the letter: t̄. Contexts double as the type of such a list of
terms, so we can write for example t̄ : Γ where Γ = (m : Nat)(p : m ≡ zero) and
t̄ = zero refl. The simultaneous substitution of the terms t̄ for the variables in
the context Γ is written as [Γ 7→ t̄]. We denote substitutions by small greek letters
σ, τ, . . . The identity substitution is written as [], and the forward composition of
two substitutions σ and τ is written as σ; τ .

Inductive Families. Inductive families are (dependent) types inductively de-
fined by a number of constructors, for example Nat is defined by the constructors
zero : Nat and suc : Nat → Nat. Inductive families can also have parameters
and indices, for example Vec A n is an inductive family with one parame-
ter A : Set, one index n : Nat, and two constructors nil : Vec A zero and
cons : (n : Nat) → A → Vec A n → Vec A (suc n). A formal treatment of
inductive families can be found in [Dyb94]. For our purposes, it suffices to know
that inductive families are introduced by the rules given in Fig. 3.

Γ valid (Data)
Γ ` D : Ψ∆→ Setl

Γ valid (Cons)
Γ ` ck : ΨΦk → D ı̄k

Fig. 3. Introduction rules for an inductive family D with parameters Ψ , indices ∆, and
constructors ck : Φk → D ı̄k for k = 1, . . . , n.

Definitional and Propositional Equality. In (intensional) type theory, there
are two distinct notions of equality. On the one hand, two terms s and t are
definitionally equal (or convertible) if Γ ` s = t : T . On the other hand, two terms
s and t are propositionally equal if we can prove their equality, i.e. if we can give a
term of type s ≡T t. Propositional equality was introduced by Martin-Löf [ML84].
In UTT, it can be defined as an inductive family with two parameters A : Seti
and a : A, one index b : A, and one constructor refl : a ≡A a.

When working with type theory in dependently typed languages such as
Agda or Coq, it is more convenient to work with definitional equalities rather
than propositional ones. This is because (in intensional type theory) definitional
equality can be checked automatically, while propositional equality has to be
proven and applied manually. When working with terms with free variables
however, not all propositionally equal terms are definitionally equal, so the
propositional equality is often necessary.

Definitions by Pattern Matching. A definition by pattern matching of a
function f consists of a number of equalities called clauses, which are of the
form f p̄ = t where p̄ is a list of patterns and t is a term called the right-hand
side. A pattern is a term or a list of terms that is built from only (fully applied)
constructors and variables, which we call the pattern variables. In dependent
pattern matching, patterns can also contain inaccessible patterns, which can occur
when there is only one type-correct term possible in a given position. As in [Nor07],
we mark inaccessible patterns as btc. For example, let Square n be an inductive
family with one index n : Nat and one constructor sq : (m : Nat)→ Square m2.
Then bm2c (sq m) is a pattern of type (n : Nat)(p : Square n). Any other pattern
btc (sq m) would be ill-typed, so the use of an inaccessible pattern is justified.

We see patterns as a distinct syntactic class rather than a special kind of
terms. We can convert a pattern p to a term by taking the underlying term dpe

defined as follows:

dxe = x dc p1 . . . pne = c dp1e . . . dpne dbtce = t (6)

A term t matches a pattern p if there exists a substitution σ such that dpeσ = t.
A pattern p̄ : ∆ is called linear if each pattern variable occurs exactly once in

an accessible position in p̄. It is called respectful [GMM06] if for each list of terms
ā : ∆ that matches all the accessible parts of p̄, we have that ā matches all the
inaccessible parts of p̄ as well. Patterns are required to be linear and respectful in
order to have decidable pattern matching in the presence of inaccessible patterns.

Formally, we write Γ |Φ ` p̄ : ∆ pattern to express that, in the context Γ , p̄
is a pattern of type ∆ with pattern variables from the context Φ. A definition by
pattern matching of a function f : ∆→ T in a context Γ then consists of a set of
clauses of the form f p̄ = t where Γ |Φ ` p̄ : ∆ pattern is linear and respectful
and ΓΦ(f : ∆→ T) ` t : T [∆ 7→ dp̄e]. In order to ensure correctness, definitions
by pattern matching are required to have three additional properties:

Completeness For each closed list of terms s̄ : ∆, there must be a pattern p̄
such that s̄ matches p̄. This is required in order to have canonicity, i.e. that
any closed normal form of an inductive family is constructor-headed.

Termination There can be no s̄ : ∆ such that there is an infinite sequence of
evaluation steps f s̄ −→ t1 −→ t2 −→ . . . where f occurs in each of the ti.
This is required in order to have strong normalization.

Confluence If f s̄ −→∗ t1 and f s̄ −→∗ t2, there should exist a term t such that
t1 −→∗ t and t2 −→∗ t. This is required in order to have the Church-Rosser
property.

If these three requirements are satisfied, we can add f to the theory by the rules
given in Fig. 4.

Γ valid (Func)
Γ ` f : Φ→ T

Γ ` s̄ = dp̄keσ : Φ
(Clause)

Γ ` f s̄ = tkσ : T [Φ 7→ s̄]

Fig. 4. Rules for a function f : Φ→ T defined by the clauses f p̄k = tk for k = 1, . . . , n.

Respectfulness can be checked step by step by context splitting (see Sect. 2.1 of
[Nor07]), completeness is checked by constructing a case tree, and termination can
be achieved by requiring that definitions are structurally recursive. Confluence is
a non-issue as long as first-match semantics are used, because then only one clause
is ever applicable at the same time. When we drop the first-match semantics, the
checks for respectfulness and termination stay valid, but those for completeness
and confluence need to be updated. We will do this in Sect. 5.

Case Trees. Definitions by pattern matching can be represented by a case tree.
A case tree tells us how the patterns of a definition are built by introducing

constructors step by step. Each leaf node of a splitting tree corresponds to a
clause of the definition. For example, consider the function parity (7) given by
Achim Jung on the Agda mailing list3. It can be represented by the case tree
given in Fig. 5.

m n

zero n

zero zero 7→ true

zero (suc n)

{
zero (suc zero) 7→ false

zero (suc (suc n)) 7→ parity zero n

(suc m) n

 (suc m) zero

{
(suc zero) zero 7→ false

(suc (suc m)) zero 7→ parity m zero

(suc m) (suc n) 7→ parity m n

Fig. 5. This case tree corresponds precisely to the definition of parity (7).

parity : Nat→ Nat → Bool

parity zero zero = true

parity zero (suc zero) = false

parity zero (suc (suc n)) = parity zero n
parity (suc zero) zero = false

parity (suc (suc m)) zero = parity m zero

parity (suc m) (suc n) = parity m n

(7)

Using case trees has a number of advantages. Firstly, the patterns at the
leaves of a case tree always form a covering, hence they are complete. Secondly,
they give an efficient method to evaluate functions defined by pattern matching.
Thirdly, each internal node in a case tree corresponds exactly to the application
of an eliminator for an inductive family, so they are a useful intermediate step
in the translation of dependent pattern matching to pure type theory (without
pattern matching) as done in [GMM06].

In section 2.2 of [Nor07], it is described how a case tree can be constructed
from a given (complete) set of clauses. When dealing with overlapping patterns,
the algorithm chooses whatever pattern comes first. In other words, the resulting
case tree follows the first-match semantics of pattern matching.

Termination Checking. In order to guarantee termination, functions are
required to be structurally recursive. This means that the arguments of recursive
calls should be structurally smaller than the pattern on the left-hand side. The
structural order ≺ is defined in Fig. 6. For functions with multiple arguments,
the function should be structurally recursive on one of its arguments, i.e. there
should be some k such that sk ≺ dpke for each clause f p̄ = t and each recursive
call f s̄ in t.
3 https://lists.chalmers.se/pipermail/agda/2012/004397.html, last visited on
15 January 2014.

https://lists.chalmers.se/pipermail/agda/2012/004397.html

ti ≺ c t1 . . . tn
f ≺ t
f s ≺ t

r ≺ s s ≺ t
r ≺ t

Fig. 6. The structural order ≺ can be used to check termination [GMM06]. The most
important property of the structural order is that it is well-founded, because this
guarantees that structurally recursive functions are indeed terminating.

We lack the space to do justice to the large amount of research on ter-
mination checking. For some more sophisticated approaches, see for example
size-change termination [LJB01], type-based termination [Bla04], and almost-full
relations [VCW12].

3 Problem Statement

When deciding which definitions by pattern matching are allowed, there is a
conflict between theory and practice. From a theoretical perspective, we want to
be able to write definitions by pattern matching in function of eliminators as in
[GMM06], because this guarantees correctness of the definitions. From a practical
perspective, we want to be able to write overlapping definitions that follow the
first-match semantics, because this reduces the number of clauses required in
some cases. In an attempt to reconcile these two goals, [Nor07] allows patterns to
overlap but translates definitions to a case tree internally using the first-match
semantics. However, the representation of function definitions as case trees and
the translation to a case tree specifically introduce a number of new problems
which we describe in this section.

Clauses Are Split Too Much. When constructing a case tree from a set of
clauses, the constructed case tree is not always the one the user intended. An
example of this behavior was given by the definition of or (4) in the introduction.
As another example, when we translate the definition (7) to a case tree using the
algorithm from [Nor07], we won’t get the case tree in Fig. 5 but rather the one
given in Fig. 7. Note that in this case tree, the constructors are introduced in a
different order. The result is that the single clause parity (suc m) (suc n) =
parity m n has been split in the following two clauses:

parity (suc zero) (suc n) = parity zero n
parity (suc (suc m)) (suc n) = parity (suc m) n

This means that a term of the form parity (suc m) (suc n), where m and n are
free variables, won’t evaluate to parity m n, even though it should according to
the input clauses. This impedes equational reasoning and can be very confusing
to the unsuspecting user. If the last clause was placed first instead, then the
correct covering would have been reconstructed. So although the patterns of this
definition form a covering, their order nevertheless influences the result!

m n

zero n

zero zero 7→ true

zero (suc n)

{
zero (suc zero) 7→ false

zero (suc (suc n)) 7→ parity zero n

(suc m) n

(suc zero) n

{
(suc zero) zero 7→ false

(suc zero) (suc n) 7→ parity zero n

(suc (suc m)) n

{
(suc (suc m)) zero 7→ parity m zero

(suc (suc m)) (suc n) 7→ parity (suc m) n

Fig. 7. In contrast to the case tree in Fig. 5, this case tree of the parity function does
not include the definitional equality parity (suc m) (suc n) = parity m n.

Not All Complete Pattern Sets Form a Covering. The second problem
is that not all complete pattern sets form a covering, hence they cannot be
represented precisely by a case tree. Consider for example the following definition
of majority due to Gérard Berry:

majority : Bool→ Bool→ Bool → Bool

majority true true true = true

majority x false true = x
majority true y false = y
majority false true z = z
majority false false false = false

(8)

It is clear that the patterns of this definition are complete and do not overlap, yet
there is no case tree representing exactly this definition. Instead, it is translated
to the case tree given in Fig. 8. We can see that in the case tree, the clause

x y z

true y z

true true z

{
true true true 7→ true

true true false 7→ true

true false z

{
true false true 7→ true

true false false 7→ false

false y z

false true z 7→ z

false false z

{
false false true 7→ false

false false false 7→ false

Fig. 8. Case tree constructed from the definition of majority (8). It does not include
the definitional equality majority x false true = x.

majority x false true = x has been split into the following two clauses:

majority true false true = true

majority false false true = false
(9)

So we have lost the definitional equality majority x false true = x. Note that
no case tree corresponds precisely to the definition (8), so this problem is inherent
to the representation of definitions by case trees.

Overlapping Patterns Can Be Useful. It would sometimes be useful to
define a function with overlapping clauses that are all interpreted as definitional
equalities, for example definition (5) of plus. Currently, such definitions are not
allowed because the last two clauses are ‘unreachable’. Yet in order to evaluate
plus m zero or plus m (suc n) where m is not in constructor form, we need
the last two clauses. For example, with definition (5) of plus, it is easy to define
the function plus-comm that proves the commutativity of plus:

plus-comm : (m : Nat)→ (n : Nat)→ plus m n ≡ plus n m
plus-comm zero n = refl

plus-comm (suc m) n = cong suc (plus-comm m n)
(10)

In contrast, to give this proof for the standard definition of plus, the Agda stan-
dard library first needs a lemma to prove that plus m (suc n) ≡ suc (plus m n),
and then the proof itself still takes approximately eight lines. So the overlapping
patterns of plus allow us to give shorter and more straightforward proofs than
before. Note that no case tree can contain overlapping patterns, so again this
restriction is inherent to the representation by case trees.

4 Allowing More General Pattern Sets

To fix these problems, we extend pattern matching in order to allow more general
pattern sets than just coverings. In particular, we allow the patterns in a definition
to overlap. Instead of following the first-match semantics, these definitions follow
‘any-match semantics’, i.e. any clause can be used to evaluate the function at any
time. In practice, this means that evaluation of a function application doesn’t
block when pattern matching gets stuck on a free variable. Instead, evaluation
continues with the next clause. This gives us ‘what-you-see-is-what-you-get’
pattern matching where all clauses hold as definitional equalities.

By extending pattern matching in this way, we solve all three above problems.
All clauses are treated as definitional equalities, so their order doesn’t matter.
We don’t need patterns to form a covering, so there is no need to split clauses.
Overlapping patterns are allowed, so there is no need to discard them. However,
our approach also has some drawbacks:

– First of all, we lose the first-match semantics. This doesn’t restrict the
functions we can define, but it requires us to write longer definitions in some
cases. This problem is unavoidable if we want clauses to be order-independent.

– We also lose the ability to translate definitions to pure type theory with elimi-
nators. To guarantee correctness (completeness, termination, and confluence),
we thus need to reason about the definitions directly.

– Finally, we lose the ability to represent functions by case trees, hence the
ability to evaluate them efficiently. It is however possible to extend case
trees with catchall subtrees that allow us to represent these more general
definitions by case trees. See the first author’s master thesis [Coc13] for a
full description.

5 Checking Definitions with Overlapping Patterns

The standard technique for checking termination doesn’t depend on the fact
that the patterns form a covering, but those for completeness and confluence
do. In this section, we describe how to check completeness and confluence in the
presence of overlapping patterns.

Completeness. To check whether a set of (overlapping) patterns is complete,
we just try to build a case tree for it using the coverage algorithm from section
2.2 of [Nor07]. Because this algorithm can only split patterns or discard them,
we know that it preserves completeness. Hence if the construction of a case tree
succeeds, we know that the patterns we started from are complete. More formally,
we have the following (equivalent) criterion for completeness:

Proposition 1. Let ∆ be a valid context and P be a set of lists of patterns of
the same type ∆. If there exists a covering O such that for each q̄ ∈ O, there
exists a p̄ ∈ P such that p̄ ⊇ q̄4, then P is complete.

Proof. Since the covering O is complete, each closed list of terms t̄ : ∆ matches a
q̄ ∈ O, i.e. there exists a substitution τ such that t̄ = dq̄eτ . By assumption, there
exists a p̄ such that p̄ ⊇ q̄, i.e. there exists a substitution σ such that dp̄eσ = dq̄e.
Then we have t̄ = dp̄eστ . This holds for any t̄ : ∆, hence the set of patterns P is
complete. ut

The fact that we can reuse the existing coverage algorithm means we don’t
have to change our intuition about when a function definition is complete. It also
means we can re-use existing code for coverage checking.

Confluence. To ensure the confluence of a definition with overlapping patterns,
we want that whenever a term matches the patterns of two clauses, then they
also give the same result for that term. In order to check whether two patterns
overlap, we will use unification. A unifier of two terms a and b is a substitution
σ such that aσ = bσ. A most general unifier of a and b is a unifier σ such that
for each other unifier σ′, there exists a substitution τ such that σ′ = σ; τ . The
question whether unifiers exist is called the unification problem. In general, this
is an undecidable problem. There exist unification algorithms (see for example

4 We write p̄ ⊇ q̄ (q̄ is a specialization of p̄) if there exists a substitution σ on the
pattern variables of p̄ such that dq̄e = dp̄eσ.

[McB00]) but they can give up in case the problem is too hard. We say that the
algorithm succeeds positively if it finds a most general unifier, that it succeeds
negatively if it concludes there exist no unifiers, and that it fails otherwise.

We make the following observation: let p̄1 and p̄2 be two patterns that have
a most general unifier σ and let p̄ = p̄1σ = p̄2σ. Then a term t̄ matches p̄ if
and only if it matches both p̄1 and p̄2. Also, if there is no unifier of p̄1 and p̄2,
then there is no term t̄ that matches both p̄1 and p̄2. So if we require that the
unification of each pair of patterns (with all pattern variables as the flexible
variables) succeeds (either positively or negatively) then we are able to check
whether two patterns overlap. This is the idea behind the following proposition.

Proposition 2. Let f : ∆ → T be defined by a set of clauses which are struc-
turally recursive on the k’th argument. Assume that for each pair of clauses
f p̄1 = t1 and f p̄2 = t2 we have that unification of p̄1 and p̄2 succeeds (either
positively or negatively). Moreover, assume that if it succeeds positively with result
σ, then t1σ and t2σ have the same normal form. Then the definition of f is
confluent.

Proof. Let ū : ∆ be a normal form, we prove that f ū has a unique normal
form by structural induction on the k’th component uk. So suppose that this
is true for all normal forms v̄ : ∆ with vk ≺ uk, and suppose f ū −→ s1 and
f ū −→ s2. Then there exist clauses f p̄1 = t1, f p̄2 = t2 and substitutions τ1, τ2
such that dp̄1eτ1 = ū = dp̄2eτ2, t1τ1 = s1 and t2τ2 = s2. In particular we have
that τ = τ1; τ2 is a unifier of p̄1 and p̄2, so unification of p̄1 and p̄2 cannot succeed
negatively. Unification of p̄1 and p̄2 cannot fail by assumption, hence it must
succeed positively with result the most general unifier σ and moreover there must
exist a normal form t such that t1σ −→∗ t and t2σ −→∗ t. Because σ is a most
general unifier of p̄1 and p̄2, there exists a substitution τ ′ such that τ = σ; τ ′.
This implies s1 = t1τ = (t1σ)τ ′ −→∗ tτ ′ and s2 = t2τ = (t2σ)τ ′ −→∗ tτ ′. By
the induction hypothesis, all recursive calls to f in t1τ and t2τ have a unique
normal form, hence the (shared) normal form tτ ′ of t1τ and t2τ is unique. We
can conclude that the definition of f is confluent. ut

Note that in order to check confluence of a recursive function, we need to
know that the definition has already passed the termination checker. This is
because we need to evaluate the function in question in order to check confluence.

It can happen that the unification of two patterns fails while checking con-
fluence. However, unification of patterns consisting of only constructors and
variables always succeeds (either positively or negatively). So this problem can
only occur if an inaccessible pattern overlaps with a constructor pattern or
another inaccessible pattern.

6 Implementation and Examples

Our extended form of pattern matching, as well as the confluence checker, have
been implemented as an experimental modification to the Agda compiler. The

implementation allows choosing between the standard semantics and ours for
each definition separately by the use of a new keyword overlapping. We do
not give the details of the implementation here, but instead give some examples
of definitions with overlapping patterns. In particular, we add extra evaluation
rules to some standard definitions. This can make it easier to prove propositions
that mention these functions, as in the proof of plus-comm (10). We also give an
example where our confluence check fails unexpectedly.

Concatenation of Vectors. Here is a definition of the concatenation concat

on vectors that uses overlapping patterns:

concat : (m : Nat) (n : Nat) (v : Vec A m) (w : Vec A n)→ Vec A (plus m n)
concat bzeroc n nil w = w
concat m bzeroc v nil = v
concat bsuc mc n (cons m a v) w = cons m a (concat m n v w)

(11)
Note that for the first clause to be of correct type, we need that plus zero n = n;
while for the second clause we need that plus m zero = m. So this definition of
concat relies upon the fact that the definition of plus has overlapping clauses.

Transitivity of the Propositional Equality. The definition of the proposi-
tional equality ≡A as an inductive family only provides reflexivity of the relation.
In order to prove that ≡A is symmetric and transitive, we have to give a proof
ourselves. For example, here is a proof of transitivity:

trans : (x : A) (y : A) (z : A) (p : x ≡ y) (q : y ≡ z)→ x ≡ z
trans byc byc z refl q = q
trans x byc byc p refl = p

(12)

We again use overlapping patterns in order to increase the number of evaluation
rules. This ensures that both proofs of the form trans refl p and trans p refl
are automatically simplified to p, saving us from proving them ourselves. This also
shows that the confluence checker works in the presence of inaccessible patterns.

A Counterexample: Multiplication. Here is another function on natural
numbers, multiplication:

mult : Nat→ Nat → Nat

mult zero y = zero

mult (suc x) y = plus (mult x y) y
mult x zero = zero

mult x (suc y) = plus x (mult x y)

(13)

Let us focus on the confluence of the second and the fourth clause. After unification
of the patterns, the right-hand sides become respectively:

plus (mult x (suc y)) (suc y) −→∗ suc (plus (plus x (mult x y)) y)

plus (suc x) (mult (suc x) y) −→∗ suc (plus x (plus (mult x y) y))

We see that the right-hand sides do not have the same normal form, but are
only equal up to associativity of plus. Hence this definition does not satisfy our
criterion for confluence (Proposition 2). It is however possible to prove that the
right-hand sides are propositionally equal. But to obtain confluence, we need
them to have the same normal form, i.e. they must be definitionally equal. To
solve this problem, we would have to introduce a new evaluation rule of the form

plus (plus x y) z −→ plus x (plus y z)

Such rules are currently not allowed in type theory, and it is not clear how to
add them in a sound way. Hence we refrain from allowing definitions such as (13)
in the current work.

7 Link with Non-overlapping Definitions

We have shown that overlapping function definitions can be useful, but we also
have to worry about soundness. For definitions by pattern matching whose
patterns form a covering, this is done by translating the definition to repeated
application of eliminators [GMM06]. If the patterns of a definition do not form a
covering however, there is no hope to proceed in this way.

In this section, we prove that each new function definition we introduce is
equivalent to an old one. In order to formulate the proposition, we first have
to define what we mean by ‘equivalent’. It is not realistic to ask that they are
definitionally or propositionally equal, because both are intensional equalities:
they care about how functions are defined, not just about their values. To solve
this problem, we assume the functional extensionality axiom, which expresses
that two functions are equal when they have equal values for equal inputs. This is
achieved by adding for each pair of functions f1, f2 : (x : A)→ B x the following
constant:

Ext : ((x : A)→ f1 x ≡ f2 x)→ f1 ≡ f2 (14)

This constant was introduced by [Hof95]. Now we can state our main theorem:

Theorem 3. Assume the functional extensionality axiom (14). If a function
Γ ` f : ∆ → T is defined by a set of clauses that satisfy the criteria for
completeness (see Proposition 1), termination (i.e. the definition is structurally
recursive), and confluence (see Proposition 2); then we can define a function
Γ ` f ′ : ∆→ T whose patterns form a covering such that Γ ` eqf : f ≡ f ′ where
eqf only contains functions whose patterns form a covering as well.

The equality proof eqf given by this theorem is internal to the language,
rather than meta-theoretical. In principle, this could cause problems because we
don’t prove consistency of the extended language. However, note the following:

– Functions with overlapping patterns cannot occur inside the equality proof.
So possible inconsistencies arising from non-confluent definitions do not
invalidate the theorem.

– The function f is not required to be terminating, but only structurally
recursive, which is easily checked and requires no further proof. It would be
better to be independent of the specific termination criterion, but this would
introduce a circularity in the proof.

– While we need reductions in order to typecheck a function and hence to check
its completeness, a function can never occur in its own type. Hence we do
not need to know the definition is confluent in order to check completeness.

In order to prove this theorem, we use the heterogeneous equality a ∼=A,B b
introduced by McBride [McB00]. It allows the expression of equality between
terms of different types, but still only allows a proof if the types are equal.
Heterogeneous equality can be defined as an inductive family with two parameters
A : Seti and a : A, two indices B : Seti and b : B, and one constructor
refl : a ∼=A,A a. In contrast to [McB00], this definition uses the standard
elimination principle (which McBride calls eqIndElim). We will work with the
heterogeneous equality by means of pattern matching, this is equivalent with
using eqIndElim together with the K axiom [GMM06]. We will use the following
fact about the heterogeneous equality:

– For any type A and terms x, y : A, we have:

hom-to-het : x ≡ y → x ∼= y (15)
het-to-hom : x ∼= y → x ≡ y (16)

Assuming extensionality, we additionally have the following facts:

– For all f1 : (x : A1)→ B1 x and f2 : (x : A2)→ B2 x, we have:

λ-cong : (A1
∼= A2)→

((x1 : A1)(x2 : A2)→ x1
∼= x2 → f1 x1

∼= f2 x2)→
f1
∼= f2

(17)

– For all t1 : A1, t2 : A2, f1 : (x : A1)→ B1 and f2 : (x : A2)→ B2, we have:

ap-cong : ((x1 : A1)(x2 : A2)→ x1
∼= x2 → B1 x1

∼= B2 x2)→
f1
∼= f2 → t1 ∼= t2 → f1 t1 ∼= f2 t2

(18)

– For all B1 : A1 → Seti and B2 : A1 → Seti we have:

Π-cong : (A1
∼= A2)→

((x1 : A1)(x2 : A2)→ x1
∼= x2 → B1 x1

∼= B2 x2)→
((x1 : A1)→ B1 x1) ∼= ((x2 : A2)→ B2 x2)

(19)

The last three facts are used mainly as a tool to ‘push’ our (heterogeneous)
propositional equalities through all syntactic constructs. For a machine-checked
proof of these facts in Agda, please refer to the appendix.

Proof (of Theorem 3). We start by giving the definition of the function f ′. Let
P be the set of patterns in the definition of f . Because the clauses of f satisfy

the criterion for completeness (Proposition 1), there exists a covering O such
that for each q̄ ∈ O, there exists a p̄ ∈ P such that p̄ ⊇ q̄. In other words, for all
q̄ ∈ O there exists a clause f p̄ = t of f and a substitution σ such that p̄σ = q̄.
This means we have ΓΨ(f : ∆→ T) ` t : T [∆ 7→ dp̄e] where Ψ is the context of
pattern variables of p̄. Let t′ be the term t where all occurrences of f have been
replaced by f ′. The function f ′ is defined by the clauses f ′ q̄ = t′σ for all q̄ ∈ O.
We check that this is a valid definition:

– Let Φ be the context of pattern variables of q̄. We have ΓΦ(f ′ : ∆→ T) `
t′σ : T [∆ 7→ dq̄e] by α-renaming and the fact that p̄σ = q̄, so the clauses of
f ′ are valid.

– The set of patterns O is a covering, hence the patterns are complete.
– The arguments of all recursive calls f s̄ in the right-hand side of a clause
f p̄ = t satisfy s̄ ≺ dp̄e. Note that if s ≺ t, then also sσ ≺ tσ for any
substitution σ (by induction on the definition of ≺). This gives us that
s̄σ ≺ dp̄eσ = dq̄e. This implies that the definition of f ′ is structurally
recursive, hence it is terminating.

– The patterns in O do not overlap, hence the definition of f ′ is confluent.

Now we define ẽqf such that Γ ` ẽqf : f ∼= f ′. By extensionality (14) it is
sufficient to give a term Γ ` ẽqf(∆) : ∆→ f ∆ ∼= f ′ ∆. In order to do this, we
use pattern matching with the same pattern set O used in the definition of f ′.
Let Γ |Φ ` q̄ : ∆ pattern be one of these patterns, the return type of ẽqf(∆) for
that pattern becomes f dq̄e ∼= f ′ dq̄e.

On the one hand, by definition of O there exists a clause f p̄ = t of f and a
substitution σ such that p̄σ = q̄. This implies that Γ ` f dq̄e = tσ : T [∆ 7→ dq̄e].
On the other hand, there is a clause f ′ q̄ = t′σ of f ′, hence Γ ` f ′ dq̄e =
t′σ : T [∆ 7→ dq̄e]. So we are left to give a term of type tσ ∼= t′σ in the context
Γ̃ = ΓΦ(ẽqf(∆) : ∆→ f ∆ ∼= f ′ ∆).

Note that the bound variables in t and t′ with the same name do not necessarily
have the same type, because occurrences of f in the types have been replaced by
f ′. In order to avoid confusion between these variables, we α-rename all bound
variables x in t′ to their primed variants x′.

In order to proceed, we first fix some notations. Let Ξ be a context such that
Γ̃Ξ valid. We denote with Ξ ′ the context Ξ where each variable x has been
replaced by its primed version x′ and each occurrence of f has been replaced
by f ′. If Γ̃Ξ ` a : A, then a′ denotes the term a where each variable from the
context Ξ has been replaced by x′ and each occurrence of f has been replaced
by f ′. Note that Γ̃Ξ ′ ` a′ : A′, and that this can be proven by using the
same tree of inference rules. One further notation we use is Ξ ∼= Ξ ′ for the
context expressing pairwise equality between the variables in Ξ and Ξ ′. For
example, if Ξ = (n : Nat)(v : Vec n) and Ξ ′ = (n′ : Nat)(v′ : Vec n′), then
Ξ ∼= Ξ ′ = (eqn : n ∼= n′)(eqv : v ∼= v′).

In order to prove tσ ∼= t′σ in the context Γ̃ , we give for all contexts Ξ and
all terms Γ̃Ξ ` a : A a proof Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` eqa : a ∼= a′. As long as a is not
a recursive call of the form f ū, we proceed by induction on the derivation of

Γ̃Ξ ` a : A (and hence also that of Γ̃Ξ ′ ` a′ : A′). See Fig. 2, Fig. 3, and Fig. 4
for the relevant rules.

Var rule In this case we have a = x for some variable x from the context Γ̃Ξ. If it
comes from Γ̃ , we have a′ = x and hence Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` refl : x ∼= x. If on
the other hand it comes from Ξ, we have a′ = x′ and eqx : x ∼= x′ ∈ (Ξ ∼= Ξ ′),
hence Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` eqx : x ∼= x′ (where eqx : x ∼= x′ ∈ Ξ ∼= Ξ ′).

=Ty rule In this case we just proceed with the induction on the derivation of
the first assumption of the rule.

Set rule In this case we have a = Seti for some i, hence also a′ = Seti. So we
have Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` refl : Seti ∼= Seti.

Π rule In this case we have a = (x : U) → V and a′ = (x : U ′) → V ′ =
(x′ : U ′) → V ′[x 7→ x′]. By the induction hypothesis, we have Γ̃ΞΞ ′(Ξ ∼=
Ξ ′) ` eqU : U ∼= U ′ and Γ̃Ξ(x : U)Ξ ′(x′ : U ′)(Ξ ∼= Ξ ′)(eqx : x ∼= x′) `
eqV : V ∼= V ′[x 7→ x′]. This gives us Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` Π-cong eqU
(λx x′ eqx. eqV) : (x : U)→ V ∼= (x′ : U ′)→ V ′[x 7→ x′].

λ rule In this case we have a = λ(x : U). v and a′ = λ(x : U ′). v′ = λ(x′ :
U ′). v′[x 7→ x′]. By the induction hypothesis, we have Γ̃ΞΞ ′(Ξ ∼= Ξ ′) `
eqU : U ∼= U ′ and Γ̃Ξ(x : U)Ξ ′(x′ : U ′)(Ξ ∼= Ξ ′)(eqx : x ∼= x′) ` eqv : v ∼=
v′[x 7→ x′]. This gives us Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` λ-cong eqU (λx x′ eqx. eqv) :
λ(x : U). v ∼= λ(x′ : U ′). v′[x 7→ x′].

App rule In this case we have a = g u and a′ = g′ u′. By the induction
hypothesis, we have Γ̃Ξ(x : U)Ξ ′(x′ : U ′)(Ξ ∼= Ξ ′)(eqx : x ∼= x′) ` eqV :
V ∼= V ′[x 7→ x′], Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` eqg : g ∼= g′, and Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` equ :

u ∼= u′. This gives us Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` ap-cong (λx x′ eqx. eqV) eqg equ :
g u ∼= g′ u′.

Cons rule In this case we have a = c and a′ = c for a constructor c. This gives
us Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` refl : c ∼= c.

Data rule In this case we have a = D and a′ = D for an inductive family D.
Hence we have Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` refl : D ∼= D.

Func rule In this case we have a = g and a′ = g for a defined function g distinct
from f and f ′. Then we have Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` refl : g ∼= g.

In the end, we reach a recursive call: a = f ū and a′ = f ′ ū′. In this case,
we recursively call the proof ẽqf(∆) which we are in the process of defining:
Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` ẽqf(∆) ū : f ū ∼= f ′ ū. This call is structurally recursive
because the recursive call to f in a is. By continuing the induction as above
we also get Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` eqū : ū ∼= ū′. By applying ap-cong repeatedly,
we get Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` eqf ′(ū) : f ′ ū ∼= f ′ ū′, and by transivity of ∼=, we
get Γ̃ΞΞ ′(Ξ ∼= Ξ ′) ` eqf(ū) : f ū ∼= f ′ ū′, completing the definition of ẽqf(∆)

and hence also that of ẽqf . Finally, by het-to-hom (16), we get eqf such that
Γ ` eqf : f ≡ f ′, finishing the proof. ut

8 Related Work

Dependent pattern matching was introduced by Coquand in [Coq92]. A big
step toward its practical usefulness was the introduction of the ‘with’ construct

by [MM04]. On a more fundamental level, [GMM06] shows that definitions by
dependent pattern matching can be translated to pure type theory with the K
axiom. Real languages with dependent pattern matching include Agda [Nor07],
Coq [Soz10], and Idris [Bra13].

– In [Ken90], tightest-match semantics for overlapping patterns are used. To
ensure confluence, they require for each pair of overlapping patterns that
their unification is also part of the definition. In contrast to our current work,
they do not look at the right-hand sides to check confluence.

– In the Calculus of Algebraic Constructions [BJO99] general well-typed rewrit-
ing rules are allowed. However, in order to prove confluence they have to
assume that the left-hand sides of the rewrite rules do not overlap.

– In deduction modulo [DHK03], overlapping rewriting rules are allowed, but
confluence is usually assumed or proven manually.

– In systems based on the LF logical framework and the λΠ-calculus (for
example Twelf [PS99]), there can be overlapping clauses, but definitions are
not required to be confluent. Instead backtracking is utilized to generate all
possible solutions.

– In Isabelle/HOL, it is possible to define functions by pattern matching such
that the result doesn’t depend on the order of the patterns [Kra06]. In
contrast to our work, they don’t deal with dependent pattern matching, and
they don’t give a concrete algorithm for confluence checking.

– Even though we provide more definitional equalities than the standard
formulation of pattern matching, some will always be missing. Another
possibility would be to add a better support for coercion by propositional
equality proofs, as supported for example by OTT [AMS07].

– The recent work on adding equations for neutral terms [ABM13] starts from a
motivation similar to ours, but doesn’t focus on pattern matching in specific.

9 Conclusion and future work

The main goal of this paper is to make dependent pattern matching more
intuitively usable for specialists and non-specialists alike. We do this by extending
the semantics of pattern matching in order to allow overlapping patterns. Because
all clauses are interpreted as definitional equalities, these definitions behave as
one would expect them to. This also makes pattern matching more amenable to
equational reasoning. Type theory supports equational reasoning in the language
itself by means of the identity type, so this is not just a theoretical advantage,
but also a practical one.

In practice, a typical user would probably start by giving a non-overlapping
definition and add overlapping clauses when he has a need for them. For example,
when giving the clause concat v ε = v for the concatenation operator on vectors,
the type checker complains that the length plus n zero of the left-hand side does
not equal the length n of the right-hand side. The user can then add the clause
plus n zero = n to the definition of plus, after which the clause for concat

passes the type checker. This blends well with the typical interactive development
of dependently typed programs in dependently typed programming languages.

The current implementation is still very experimental. It would be interesting
to give a full implementation that is compatible with extensions of pattern
matching such as wildcard patterns, ‘with’-expressions [MM04], and coinductive
data types. It should also be possible to implement the pattern matching described
in this paper in other languages with dependent pattern matching such as Coq.

One limit to our approach is that the confluence checker doesn’t always see
that a definition is confluent. This occurs when inaccessible patterns overlap
with constructor patterns or other inaccessible patterns. This could be solved
by improving the unification algorithm for patterns. Another case where the
confluence check fails, is the definition of multiplication (13). This problem is not
easily solved by improving the confluence checker, however. Rather, it depends
crucially on the question whether we want to see l + (m+ n) and (l +m) + n as
‘the same’ even if l, m and n are free variables.

When designing a dependently-typed programming language, a balance needs
to be found w.r.t. the definitional equality. It typically includes at least β-
equivalence for functions, but e.g. Agda additionally has definitional η-equivalence
for functions and record types [Nor07]. Strengthening definitional equality gen-
erally increases programmer convenience but makes equality and type-checking
harder for the compiler to decide and may exclude certain models of the theory.
When adding functions defined by pattern matching to the theory, definitional
equality needs to be extended with their computational behaviour as in the
Clause rule of Fig. 4. In this setting, our work can be seen as allowing functions
with overlapping reduction rules that cannot be reduced to the non-overlapping
rules of data type eliminators. Our new compromise is that we allow overlapping
reduction rules as long as confluence can be checked definitionally. We think
our approach strikes an interesting new balance between having too little and
too many definitional equalities: have any less evaluation rules, and overlap-
ping clauses cannot all hold as definitional equalities; have any more, and extra
equalities have to be introduced to regain confluence.

As with any modification to type theory, there is the question of soundness.
We think that Theorem 3 gives a step in the right direction, but it is an interesting
question whether any extra requirements are needed in order to give a definitive
answer. A practical use of this theorem is program extraction: since we have
f ∼= f ′, these functions both give the same results for closed arguments. In a
compiled program, only closed terms are evaluated so we can freely replace f by
f ′. Because f ′ can be compiled to a case tree, this increases the efficiency of the
extracted program.

Acknowledgments

This research is partially funded by the Research Fund KU Leuven, and by the
Research Foundation - Flanders under grant number G004321N. Jesper Cockx

and Dominique Devriese both hold a Ph.D. fellowship of the Research Foundation
- Flanders (FWO).

References
Ab12. A. Abel, Agda: equality. (http://www2.tcs.ifi.lmu.de/~abel/Equality.

pdf).
ABM13. G. Allais, P. Boutillier, and C. McBride, New equations for neutral terms.

Dependently-Typed Programming, 2013.
AMS07. T. Altenkirch, C. McBride, and W. Swierstra, Observational equality, now!

Programming languages meets program verification, 2007.
BJO99. F. Blanqui, J. Jouannaud, and M. Okada, The calculus of algebraic construc-

tions. Rewriting Techniques and Applications, 1999.
Bla04. F. Blanqui, A type-based termination criterion for dependently-typed higher-

order rewrite systems. Rewriting Techniques and Applications, 2004.
BP85. L. Bachmair, and D. A. Plaisted, Termination orderings for associative-

commutative rewriting systems. Journal of Symbolic Computation 1.4, 1985.
Bra13. E. Brady, Idris, a General Purpose Dependently Typed Programming Lan-

guage: Design and Implementation. JFP 23.5, 2013.
Coc13. J. Cockx, Overlapping and order-independent patterns in type theory. Master

thesis, KU Leuven, 2013.
Coq92. T. Coquand, Pattern matching with dependent types. Types for proofs and

programs, 1992.
DHK03. G. Dowek, T. Hardin, and C. Kirchner, Theorem proving modulo. Journal of

Automated Reasoning, 2003.
Dyb94. P. Dybjer, Inductive families. Formal Aspects of Computing 6.4, 1994.
GMM06. H. Goguen, C. McBride, and J. McKinna, Eliminating dependent pattern

matching. Algebra, Meaning, and Computation, 2006.
Hof95. M. Hofmann, Extensional concepts in intensional type theory. PhD thesis,

University of Edinburgh, 1995.
Hud89. P. Hudak, Conception, evolution, and application of functional programming

languages. ACM Computing Surveys 21.3, 1989.
Ken90. R. Kennaway, The specificity rule for lazy pattern-matching in ambiguous

term rewrite systems. ESOP ’90 (LNCS 432), 1990.
Kra06. A. Krauss, Partial recursive functions in higher-order logic. Automated

Reasoning (2006).
LJB01. C. S. Lee, N. D. Jones, and A. M. Ben-Amram, The size-change principle

for program termination. ACM SIGPLAN Notices 36.3, 2001.
Luo94. Z. Luo, Computation and reasoning: a type theory for computer science.

International Series of Monographs on Computer Science 11, 1994.
McB00. C. McBride, Dependently typed functional programs and their proofs. PhD

thesis, University of Edinburgh, 2000.
ML84. P. Martin-Löf, Intuitionistic type theory. Studies in Proof Theory 1, 1984.
MM04. C. McBride, and J. McKinna, The view from the left. JFP 14.1, 2004.
Nor07. U. Norell, Towards a practical programming language based on dependent

type theory. PhD Thesis, Chalmers University of Technology, 2007.
PS99. F. Pfenning, and C. Schürmann, System description: Twelf - a meta-logical

framework for deductive systems. CADE 16, 1999.
Soz10. M. Sozeau, Equations: A dependent pattern-matching compiler. ITP, 2010.
VCW12. D. Vytiniotis, T. Coquand, and D. Wahlstedt, Stop when you are almost-full.

ITP (LNCS 7406), 2012.

http://www2.tcs.ifi.lmu.de/~abel/Equality.pdf
http://www2.tcs.ifi.lmu.de/~abel/Equality.pdf

Appendix: Agda Code on Heterogeneous Equality and
Functional Extensionality

The following is a construction in Agda of hom-to-het (15), het-to-hom (16),
λ-cong (17), ap-cong (18), and Π-cong (19).

open import Level using ()

data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x

data _∼=_ {a} {A : Set a} (x : A) : {A’ : Set a} → A’ → Set a where
refl : x ∼= x

hom-to-het : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ∼= y
hom-to-het refl = refl

het-to-hom : ∀ {a} {A : Set a} {x y : A} → x ∼= y → x ≡ y
het-to-hom refl = refl

equal-type : ∀ {a} {A : Set a} {x : A} {A’ : Set a} {x’ : A’} →
x ∼= x’ → A ≡ A’

equal-type refl = refl

equal-types : ∀ {a b} {A : Set a} {B1 B2 : A → Set b} →
{f1 : (x : A) → B1 x} {f2 : (x : A) → B2 x} →
((x : A) → f1 x ∼= f2 x) → (x : A) →
B1 x ≡ B2 x

equal-types eqfx x = equal-type (eqfx x)

ap : ∀ {a b} {A : Set a} {t1 t2 : A} →
{B1 : A → Set b} → {B2 : A → Set b} →
{f1 : (x : A) → B1 x} → {f2 : (x : A) → B2 x} →
B1
∼= B2 → f1

∼= f2 → t1
∼= t2 → f1 t1

∼= f2 t2

ap eqB eqf refl with eqB | eqf
ap eqB eqf refl | refl | refl = refl

postulate Ext : ∀ {a b} {A : Set a} {B : A → Set b}
{f1 f2 : (x : A) → B x} →
((x : A) → f1 x ≡ f2 x) → f1 ≡ f2

Ext’: ∀ {a b} {A : Set a} {B1 B2 : A → Set b}
{f1 : (x : A) → B1 x} {f2 : (x : A) → B2 x} →
((x : A) → f1 x ∼= f2 x) → f1

∼= f2

Ext’ eqfx with Ext (equal-types eqfx)
Ext’ eqfx | refl = hom-to-het (Ext (λ x → het-to-hom (eqfx x)))

λ-cong : ∀ {a b} {A1 A2 : Set a}
{B1 : A1 → Set b} {B2 : A2 → Set b}
{f1 : (x : A1) → B1 x} {f2 : (x : A2) → B2 x} →
(A1

∼= A2) →
((x1 : A1)(x2 : A2) → x1

∼= x2 → f1 x1
∼= f2 x2) →

f1
∼= f2

λ-cong refl eqfx = Ext’ (λ x → eqfx x x refl)

ap-cong : ∀ {a b} {A1 A2 : Set a} {t1 : A1} {t2 : A2} →
{B1 : A1 → Set b} → {B2 : A2 → Set b} →
{f1 : (x : A1) → B1 x} {f2 : (x : A2) → B2 x} →
((x1 : A1)(x2 : A2) → x1

∼= x2 → B1 x1
∼= B2 x2) →

f1
∼= f2 → t1

∼= t2 → f1 t1
∼= f2 t2

ap-cong eqBx eqf refl = ap (Ext’ (λ x → eqBx x x refl)) eqf refl

Π-cong : ∀ {a b} {A1 A2 : Set a}
{B1 : A1 → Set b} {B2 : A2 → Set b} →
(A1

∼= A2) →
((x1 : A1)(x2 : A2) → x1

∼= x2 → B1 x1
∼= B2 x2) →

((x : A1) → B1 x) ∼= ((x : A2) → B2 x)
Π-cong refl eqBx = ap refl refl (Ext’ (λ x → eqBx x x refl))

	Overlapping and Order-Independent Patterns

