{-# OPTIONS --no-auto-inline #-}
module Haskell.Prim where
open import Agda.Primitive public
open import Agda.Builtin.Bool public renaming (true to True; false to False)
open import Agda.Builtin.Int public renaming (Int to Integer)
open import Agda.Builtin.Nat public renaming (_==_ to eqNat; _<_ to ltNat; _+_ to addNat; _-_ to monusNat; _*_ to mulNat)
open import Agda.Builtin.Char public renaming (primCharToNat to c2n)
open import Agda.Builtin.Unit public
open import Agda.Builtin.Equality public
open import Agda.Builtin.FromString public
open import Agda.Builtin.FromNat public
open import Agda.Builtin.FromNeg public
open import Agda.Builtin.String public renaming (String to AgdaString)
open import Agda.Builtin.Word public renaming (primWord64ToNat to w2n; primWord64FromNat to n2w)
open import Agda.Builtin.Strict public
open import Agda.Builtin.List public
variable
@0 ℓ : Level
a b c d e : Set
f m s t : Set → Set
id : a → a
id x = x
infixr 9 _∘_
_∘_ : (b → c) → (a → b) → a → c
(f ∘ g) x = f (g x)
flip : (a → b → c) → b → a → c
flip f x y = f y x
const : a → b → a
const x _ = x
infixr 0 _$_
_$_ : (a → b) → a → b
f $ x = f x
infix -1 case_of_
case_of_ : (a' : a) → ((a'' : a) → @0 {{ a' ≡ a'' }} → b) → b
case x of f = f x
infix -2 if_then_else_
if_then_else_ : {@0 a : Set ℓ} → (flg : Bool) → (@0 {{ flg ≡ True }} → a) → (@0 {{ flg ≡ False }} → a) → a
if False then x else y = y
if True then x else y = x
the : (@0 a : Set ℓ) -> a -> a
the _ x = x
instance
iIsStringAgdaString : IsString AgdaString
iIsStringAgdaString .IsString.Constraint _ = ⊤
iIsStringAgdaString .fromString s = s
instance
iNumberNat : Number Nat
iNumberNat .Number.Constraint _ = ⊤
iNumberNat .fromNat n = n
lengthNat : List a → Nat
lengthNat [] = 0
lengthNat (_ ∷ xs) = addNat 1 (lengthNat xs)
data ⊥ : Set where
magic : {A : Set} → ⊥ → A
magic ()
exFalso : {x : Bool} → (x ≡ True) → (x ≡ False) → ⊥
exFalso {False} () b
exFalso {True} a ()
data All {a b} {A : Set a} (B : A → Set b) : List A → Set (a ⊔ b) where
instance
allNil : All B []
allCons : ∀ {x xs} ⦃ i : B x ⦄ ⦃ is : All B xs ⦄ → All B (x ∷ xs)
data Any {a b} {A : Set a} (B : A → Set b) : List A → Set (a ⊔ b) where
instance
anyHere : ∀ {x xs} ⦃ i : B x ⦄ → Any B (x ∷ xs)
anyThere : ∀ {x xs} ⦃ is : Any B xs ⦄ → Any B (x ∷ xs)
data IsTrue : Bool → Set where
instance itsTrue : IsTrue True
data IsFalse : Bool → Set where
instance itsFalse : IsFalse False
data NonEmpty {a : Set} : List a → Set where
instance itsNonEmpty : ∀ {x xs} → NonEmpty (x ∷ xs)
data TypeError (err : AgdaString) : Set where
it : ∀ {@0 ℓ} {@0 a : Set ℓ} → ⦃ a ⦄ → a
it ⦃ x ⦄ = x